Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Planta ; 259(1): 15, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38071691

RESUMEN

MAIN CONCLUSION: LSC CO17-1AK and anti-HER2 VHH-FcK can be produced in a single plant and exhibit anti-tumor activities comparable to those of their respective parent antibodies. Recombinant monoclonal antibodies (mAbs) which can be applied to treat various cancers, are primarily produced using mammalian, insect, and bacteria cell culture systems. Plant expression systems have also been developed to produce antibodies. Plant expression systems present several advantages, including a lack of human pathogenic agents, efficient production costs, and easy large-scale production. In this study, we generated a transgenic plant expressing anti-colorectal cancer large single chain (LSC) CO17-1AK and anti-human epidermal growth factor receptor 2 (HER2) VHH-FcK mAbs by cross-pollinating plants expressing LSC CO17-1AK and anti-HER2 VHH-FcK, respectively. F1 siblings expressing both LSC CO17-1AK and anti-HER2 VHH-FcK were screened using polymerase chain reaction and Western-blot analyses. The cell enzyme-linked immunosorbent assay (Cell ELISA) confirmed the binding of LSC CO17-1AK and anti-HER2 VHH-FcK to target proteins in the SW620 human colorectal cancer and the SKBR-3 human breast cancer cell lines, respectively. The wound healing assay confirmed the inhibitory activity of both antibodies against SW620 and SKBR-3 cell migration, respectively. In conclusion, both LSC CO17-1AK mAb and anti-HER2 VHH-FcK can be produced in a single plant, achieve binding activities to SW620 and SKBR-3 cancer cells, and inhibitory activity against SW620 and SKBR-3 cell migration similar to their parental antibodies, respectively.


Asunto(s)
Anticuerpos Monoclonales , Mamíferos , Animales , Humanos , Anticuerpos Monoclonales/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ensayo de Inmunoadsorción Enzimática , Western Blotting , Mamíferos/metabolismo
2.
Cell Commun Signal ; 21(1): 323, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950232

RESUMEN

BACKGROUND: Although acetylsalicylic acid has been widely used for decades to treat and prevent various diseases, its potential effects on endometrial receptivity and subsequent pregnancy rates are still controversial due to conflicting data: many reports have shown positive effects of acetylsalicylic acid, whereas others have found that it has no effect. Furthermore, the direct effects of acetylsalicylic acid on various functions of normal endometrial cells, especially endometrial stem cells, and their underlying molecular mechanisms have not yet been proven. Recently, studies have revealed that a reduced number of active stem/progenitor cells within endometrial tissue limits cyclic endometrial regeneration and subsequently decreases pregnancy success rates, suggesting that endometrial stem cells play a critical role in endometrial regeneration and subsequent endometrial receptivity. METHODS: We assessed whether aspirin treatment can inhibit various endometrial stem cell functions related to regenerative capacity, such as self-renewal, migration, pluripotency/stemness, and differentiation capacity, in vitro. Next, we evaluated whether SERPINB2 regulates the effects of aspirin on endometrial stem cell functions by depleting SERPINB2 expression with specific shRNA targeting SERPINB2. To further investigate whether aspirin also inhibits various endometrial stem cell functions in vivo, aspirin was administered daily to mice through intraperitoneal (i.p.) injection for 7 days. RESULTS: In addition to its previously identified roles, to the best of our knowledge, we found for the first time that acetylsalicylic acid directly inhibits various human endometrial stem cell functions related to regenerative capacity (i.e., self-renewal, migration, differentiation, and capacity) through its novel target gene SERPINB2 in vitro. Acetylsalicylic acid exerts its function by suppressing well-known prosurvival pathways, such as Akt and/or ERK1/2 signaling, through a SERPINB2 signaling cascade. Moreover, we also found that acetylsalicylic acid markedly inhibits regenerative capacity-related functions in endometrial stem cells within tissue. CONCLUSIONS: We have found that acetylsalicylic acid has diverse effects on various endometrial stem cell functions related to regenerative capacity. Our findings are a critical step toward the development of more effective therapeutic strategies to increase the chances of successful pregnancy. Video Abstract.


Asunto(s)
Aspirina , Células Madre , Embarazo , Femenino , Animales , Ratones , Humanos , Aspirina/farmacología , Aspirina/metabolismo , Endometrio/metabolismo , Transducción de Señal , Diferenciación Celular
3.
Mol Ther ; 28(11): 2458-2472, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32592690

RESUMEN

The major challenges of most adult stem cell-based therapies are their weak therapeutic effects caused by the loss of multilineage differentiation capacity and homing potential. Recently, many researchers have attempted to identify novel stimulating factors that can fundamentally increase the differentiation capacity and homing potential of various types of adult stem cells. Tryptophanyl-tRNA synthetase (WRS) is a highly conserved and ubiquitously expressed enzyme that catalyzes the first step of protein synthesis. In addition to this canonical function, we found for the first time that WRS is actively released from the site of injury in response to various damage signals both in vitro and in vivo and then acts as a potent nonenzymatic cytokine that promotes the self-renewal, migratory, and differentiation capacities of endometrial stem cells to facilitate the repair of damaged tissues. Furthermore, we also found that WRS, through its functional receptor cadherin-6 (CDH-6), activates major prosurvival signaling pathways, such as Akt and extracellular signal-regulated kinase (ERK)1/2 signaling. Our current study provides novel and unique insights into approaches that can significantly enhance the therapeutic effects of human endometrial stem cells in various clinical applications.


Asunto(s)
Citocinas/metabolismo , Endometrio/citología , Células Madre/metabolismo , Triptófano-ARNt Ligasa/metabolismo , Biomarcadores , Diferenciación Celular/genética , Autorrenovación de las Células/genética , Femenino , Humanos , Sistema de Señalización de MAP Quinasas
4.
Mol Ther ; 28(2): 452-465, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31866117

RESUMEN

Local endometrial stem cells play an important role in regulating endometrial thickness, which is an essential factor for successful embryo implantation and pregnancy outcomes. Importantly, defects in endometrial stem cell function can be responsible for thin endometrium and subsequent recurrent pregnancy losses. Therefore, many researchers have directed their efforts toward finding a novel stimulatory factor that can enhance the regenerative capacity of endometrial stem cells. Sonic hedgehog (SHH) is a morphogen that plays a key role in regulating pattern formation throughout embryonic limb development. In addition to this canonical function, we identified for the first time that SHH is actively secreted as a stem cell-activating factor in response to tissue injury and subsequently stimulates tissue regeneration by promoting various beneficial functions of endometrial stem cells. Our results also showed that SHH exerts stimulatory effects on endometrial stem cells via the FAK/ERK1/2 and/or phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways. More importantly, we also observed that endometrial stem cells stimulated with SHH showed markedly enhanced differentiation and migratory capacities and subsequent in vivo therapeutic effects in an endometrial ablation animal model.


Asunto(s)
Endometrio/citología , Endometrio/metabolismo , Proteínas Hedgehog/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Femenino , Quinasa 1 de Adhesión Focal , Humanos , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
5.
Mol Ther ; 27(6): 1087-1100, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962162

RESUMEN

The major challenges of current mesenchymal stem cell (MSC)-based therapeutics are their low differentiation potential into specialized cell types and their homing ability to sites of injury. Therefore, many researchers have directed their efforts toward finding a novel stimulatory factor that can significantly enhance the therapeutic effects of MSCs. Colony-stimulating factor 2 (CSF-2) is previously known as a hematopoietic growth factor involved in the differentiation of various myeloid cells from hematopoietic progenitor cells. In addition to this canonical hematopoietic function, we identified for the first time that CSF-2 is actively secreted by stem cells, in response to various types of injuries, as an endogenous damage signal that promotes the therapeutic effects of MSCs by enhancing their multi-lineage differentiation and migratory capacities, possibly through its receptor CD116. Our results also revealed that CSF-2 exerts its stimulatory effects on MSCs via PI3K/Akt- and/or FAK/ERK1/2-signaling pathways. More importantly, we also found that MSCs stimulated with CSF-2 show markedly enhanced differentiation and migratory capacities and subsequent in vivo therapeutic effects in an endometrial ablation animal model. Collectively, our findings provide compelling evidence for a novel non-hematopoietic function of CSF-2 in promoting multiple beneficial functions of MSCs via a non-canonical mechanism as an endogenous damage signal.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Animales , Neoplasias de la Mama/patología , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Ablación Endometrial , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Modelos Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Transducción de Señal/efectos de los fármacos
6.
Mol Ther ; 27(7): 1286-1298, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31080015

RESUMEN

Endometrial stem cells are located in the basal layer of the endometrium, and they are responsible for the cyclic regeneration of the uterus during the menstrual cycle. Recent studies have revealed that recurrent pregnancy loss is associated with an age-related stem cell deficiency in the endometrium. Therefore, intensive study of endometrial stem cell aging may provide new insights for preventing recurrent pregnancy loss. Sonic hedgehog (SHH) signaling has been identified as a morphogen during the embryonic development processes. In addition to this canonical function, we found that the age-associated decline in regenerative potential in the endometrium may be due to decreased SHH-signaling integrity in local stem cells with aging. Importantly, the current study also showed that SHH activity clearly declines with aging both in vitro and in vivo, and exogenous SHH treatment significantly alleviates various aging-associated declines in multiple endometrial stem cell functions, suggesting that SHH may act as an endogenous anti-aging factor in human endometrial stem cells. Moreover, we found that stem cell senescence may enhance SERPINB2 expression, which in turn mediates the effect of SHH on alleviating senescence-induced endometrial stem cell dysfunctions, suggesting that SERPINB2 is a master regulator of SHH signaling during the aging process.


Asunto(s)
Senescencia Celular , Endometrio/patología , Proteínas Hedgehog/metabolismo , Inhibidor 2 de Activador Plasminogénico/metabolismo , Células Madre/metabolismo , Factores de Edad , Animales , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Femenino , Técnicas de Silenciamiento del Gen , Proteínas Hedgehog/genética , Proteínas Hedgehog/farmacología , Humanos , Leiomioma/patología , Células Madre Mesenquimatosas/metabolismo , Ratones , Inhibidor 2 de Activador Plasminogénico/genética , Transfección
7.
Int J Mol Sci ; 21(4)2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079309

RESUMEN

Overexpression of human epidermal growth factor receptor type 2 (HER2) is considered as a prognostic factor of breast cancer, which is positively associated with recurrence when cancer metastasizes to the lymph nodes. Here, we expressed the single variable domain on a heavy chain (VHH) form of anti-HER2 camelid single domain antibody in tobacco plants and compared its in vitro anticancer activities with the anti-HER2 full size antibody. The gene expression cassette containing anti-HER2 camelid single domain antibody VHH fused to human IgG Fc region with KDEL endoplasmic reticulum (ER) (VHH-FcK) was transferred into the tobacco plant via the Agrobacterium-mediated transformation. The transformants were screened with polymerase chain reaction and Western blot analyses. Enzyme-linked immunosorbent assay (ELISA) confirmed the binding of the purified anti-HER2 VHH-FcK to the HER2-positive breast cancer cell line, SK-BR-3. Migration assay results confirmed anticancer activity of the plant-derived anticancer camelid single chain antibody. Taken together, we confirmed the possibility of using anti-HER2 VHH-FcK as a therapeutic anticancer agent, which can be expressed and assembled and purified from a plant expression system as an alternative antibody production system.


Asunto(s)
Antineoplásicos/inmunología , Neoplasias de la Mama/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Nicotiana/genética , Nicotiana/metabolismo , Receptor ErbB-2/inmunología , Animales , Antineoplásicos/farmacología , Mama , Camélidos del Nuevo Mundo , Línea Celular Tumoral , Movimiento Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoglobulina G/inmunología , Recurrencia Local de Neoplasia , Planticuerpos , Plantas Modificadas Genéticamente/genética , Trastuzumab
8.
Mol Ther ; 26(2): 606-617, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29066165

RESUMEN

Stem cells introduced to site of injury primarily act via indirect paracrine effects rather than direct cell replacement of damaged cells. This gives rise to understanding the stem cell secretome. In this study, in vitro studies demonstrate that the secretome activates the PI3K/Akt or FAK/ERK1/2 signaling cascades and subsequently enhances the proliferative and migratory abilities of various types of skin cells, such as fibroblasts, keratinocytes, and vascular epithelial cells, ultimately accelerating wound contraction. Indeed, inhibition of these signaling pathways with synthetic inhibitors resulted in the disruption of secretome-induced beneficial effects on various skin cells. In addition, major components of the stem cell secretome (EGF, basic FGF, and HGF) may be responsible for the acceleration of wound contraction. Stimulatory effects of these three prominent factors on wound contraction are achieved through the upregulation of PI3K/Akt or FAK/ERK1/2 activity. Overall, we lay the rationale for using the stem cell secretome in promoting wound contraction. In vivo wound healing studies are warranted to test the significance of our in vitro findings.


Asunto(s)
Comunicación Paracrina , Proteoma , Células Madre/metabolismo , Cicatrización de Heridas , Movimiento Celular , Proliferación Celular , Células Cultivadas , Humanos , Sistema de Señalización de MAP Quinasas , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Piel/metabolismo , Piel/patología
9.
J Antimicrob Chemother ; 73(4): 962-972, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29329393

RESUMEN

Background: Colistin (polymyxin E) is an important constituent of the polymyxin class of cationic polypeptide antibiotics. Intrarenal oxidative stress can contribute to colistin-induced nephrotoxicity. Nicotinamide adenine dinucleotide 3-phosphate oxidases (Noxs) are important sources of reactive oxygen species. Among the various types of Noxs, Nox4 is predominantly expressed in the kidney. Objectives: We investigated the role of Nox4 and benefit of Nox4 inhibition in colistin-induced acute kidney injury using in vivo and in vitro models. Methods: Human proximal tubular epithelial (HK-2) cells were treated with colistin with or without NOX4 knockdown, or GKT137831 (most specific Nox1/4 inhibitor). Effects of Nox4 inhibition on colistin-induced acute kidney injury model in Sprague-Dawley rats were examined. Results: Nox4 expression in HK-2 cells significantly increased following colistin exposure. SB4315432 (transforming growth factor-ß1 receptor I inhibitor) significantly inhibited Nox4 expression in HK-2 cells. Knockdown of NOX4 transcription reduced reactive oxygen species production, lowered the levels of pro-inflammatory markers (notably mitogen-activated protein kinases) implicated in colistin-induced nephrotoxicity and attenuated apoptosis by altering Bax and caspase 3/7 activity. Pretreatment with GKT137831 replicated these effects mediated by downregulation of mitogen-activated protein kinase activities. In a rat colistin-induced acute kidney injury model, administration of GKT137831 resulted in attenuated colistin-induced acute kidney injury as indicated by attenuated impairment of glomerulus function, preserved renal structures, reduced expression of 8-hydroxyguanosine and fewer apoptotic cells. Conclusions: Collectively, these findings identify Nox4 as a key source of reactive oxygen species responsible for kidney injury in colistin-induced nephrotoxicity and highlight a novel potential way to treat drug-related nephrotoxicity.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Antibacterianos/efectos adversos , Colistina/efectos adversos , NADPH Oxidasa 4/metabolismo , Estrés Oxidativo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Humanos , Modelos Biológicos , Ratas Sprague-Dawley
10.
Infect Immun ; 82(5): 1914-20, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24566622

RESUMEN

Toll-like receptors (TLRs) orchestrate a repertoire of immune responses in macrophages against various pathogens. Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans are two important periodontal pathogens. In the present study, we investigated TLR signaling regulating cytokine production of macrophages in response to F. nucleatum and A. actinomycetemcomitans. TLR2 and TLR4 are redundant in the production of cytokines (interleukin-6 [IL-6] and tumor necrosis factor alpha [TNF-α]) in F. nucleatum- and A. actinomycetemcomitans-infected macrophages. The production of cytokines by macrophages in response to F. nucleatum and A. actinomycetemcomitans infection was impaired in MyD88-deficient macrophages. Moreover, cytokine concentrations were lower in MyD88-deficient macrophages than in TLR2/TLR4 (TLR2/4) double-deficient cells. An endosomal TLR inhibitor, chloroquine, reduced cytokine production in TLR2/4-deficient macrophages in response to F. nucleatum and A. actinomycetemcomitans, and DNA from F. nucleatum or A. actinomycetemcomitans induced IL-6 production in bone marrow-derived macrophages (BMDMs), which was abolished by chloroquine. Western blot analysis revealed that TLR2/4 and MyD88 were required for optimal activation of NF-κB and mitogen-activated protein kinases (MAPKs) in macrophages in response to F. nucleatum and A. actinomycetemcomitans, with different kinetics. An inhibitor assay showed that NF-κB and all MAPKs (p38, extracellular signal-regulated kinase [ERK], and Jun N-terminal protein kinase [JNK]) mediate F. nucleatum-induced production of cytokines in macrophages, whereas NF-κB and p38, but not ERK and JNK, are involved in A. actinomycetemcomitans-mediated cytokine production. These findings suggest that multiple TLRs may participate in the cytokine production of macrophages against periodontal bacteria.


Asunto(s)
Aggregatibacter actinomycetemcomitans/fisiología , Citocinas/metabolismo , Fusobacterium nucleatum/fisiología , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Animales , Citocinas/genética , Infecciones por Fusobacterium/inmunología , Infecciones por Fusobacterium/metabolismo , Infecciones por Fusobacterium/microbiología , Regulación de la Expresión Génica/fisiología , Ratones , Ratones Noqueados , Infecciones por Pasteurellaceae/inmunología , Infecciones por Pasteurellaceae/metabolismo , Infecciones por Pasteurellaceae/microbiología , Receptores Toll-Like/genética
11.
Biofabrication ; 16(2)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38277677

RESUMEN

Conventional 2D or even recently developed 3Din vitroculture models for hypothalamus and pituitary gland cannot successfully recapitulate reciprocal neuroendocrine communications between these two pivotal neuroendocrine tissues known to play an essential role in controlling the body's endocrine system, survival, and reproduction. In addition, most currentvitroculture models for neuroendocrine tissues fail to properly reflect their complex multicellular structure. In this context, we developed a novel microscale chip platform, termed the 'hypothalamic-pituitary (HP) axis-on-a-chip,' which integrates various cellular components of the hypothalamus and pituitary gland with biomaterials such as collagen and hyaluronic acid. We used non-toxic blood coagulation factors (fibrinogen and thrombin) as natural cross-linking agents to increase the mechanical strength of biomaterials without showing residual toxicity to overcome drawbacks of conventional chemical cross-linking agents. Furthermore, we identified and verified SERPINB2 as a reliable neuroendocrine toxic marker, with its expression significantly increased in both hypothalamus and pituitary gland cells following exposure to various types of toxins. Next, we introduced SERPINB2-fluorescence reporter system into loaded hypothalamic cells and pituitary gland cells within each chamber of the HP axis on a chip, respectively. By incorporating this SERPINB2 detection system into the loaded hypothalamic and pituitary gland cells within our chip platform, Our HP axis-on-chip platform can better mimic reciprocal neuroendocrine crosstalk between the hypothalamus and the pituitary gland in the brain microenvironments with improved efficiency in evaluating neuroendocrine toxicities of certain drug candidates.


Asunto(s)
Sistemas Microfisiológicos , Hipófisis , Hipófisis/metabolismo , Hipotálamo/metabolismo , Encéfalo , Materiales Biocompatibles/metabolismo
12.
Adv Sci (Weinh) ; 11(28): e2307545, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38666393

RESUMEN

Adapted immune cells are known to develop memory functions that increase resistance to subsequent infections after initial pathogen exposure, however, it is unclear whether non-immune cells, like tissue-resident stem cells, have similar memory functions. Here, it is found that tissue-resident stem cells crucial for tissue regeneration show diminished adverse effects on diverse stem cell functions against successive exposure to foreign antigen (ß-glucan) to maintain tissue homeostasis and stability both in vitro and in vivo. These data suggest that endometrial stem cells may possess a robust memory function, in contrast, fully differentiated cells like fibroblasts and vesicular cells do not show these memory mechanisms upon consecutive antigen exposure. Moreover, the pivotal role of Angiopoietin-like 4 (ANGPTL4) in regulating the memory functions of endometrial stem cells is identified through specific shRNA knockdown in vitro and knockout mice in vivo experiments. ANGPTL4 is associated with the alteration of diverse stem cell functions and epigenetic modifications, notably through histone H3 methylation changes and two pathways (i.e., PI3K/Akt and FAK/ERK1/2 signaling) upon consecutive antigen exposure. These findings imply the existence of inherent self-defense mechanisms through which local stem cells can adapt and protect themselves from recurrent antigenic challenges, ultimately mitigating adverse consequences.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina , Ratones Noqueados , Células Madre , Animales , Ratones , Proteína 4 Similar a la Angiopoyetina/genética , Proteína 4 Similar a la Angiopoyetina/metabolismo , Proteína 4 Similar a la Angiopoyetina/inmunología , Células Madre/metabolismo , Células Madre/inmunología , Femenino , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Memoria Inmunológica/inmunología , Diferenciación Celular/inmunología
13.
Exp Mol Med ; 56(7): 1591-1605, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38945952

RESUMEN

The reciprocal crosstalk between testicular Sertoli and Leydig cells plays a vital role in supporting germ cell development and maintaining testicular characteristics and spermatogenesis. Conventional 2D and the recent 3D assay systems fail to accurately replicate the dynamic interactions between these essential endocrine cells. Furthermore, most in vitro testicular tissue models lack the ability to capture the complex multicellular nature of the testis. To address these limitations, we developed a 3D multicellular testis-on-a-chip platform that effectively demonstrates the reciprocal crosstalk between Sertoli cells and the adjacent Leydig cells while incorporating various human testicular tissue constituent cells and various natural polymers infused with blood coagulation factors. Additionally, we identified SERPINB2 as a biomarker of male reproductive toxicity that is activated in both Sertoli and Leydig cells upon exposure to various toxicants. Leveraging this finding, we designed a fluorescent reporter-conjugated toxic biomarker detection system that enables both an intuitive and quantitative assessment of material toxicity by measuring the converted fluorescence intensity. By integrating this fluorescent reporter system into the Sertoli and Leydig cells within our 3D multicellular chip platform, we successfully developed a testis-on-chip model that can be utilized to evaluate the male reproductive toxicity of potential drug candidates. This innovative approach holds promise for advancing toxicity screening and reproductive research.


Asunto(s)
Dispositivos Laboratorio en un Chip , Células Intersticiales del Testículo , Células de Sertoli , Testículo , Masculino , Células de Sertoli/metabolismo , Células de Sertoli/citología , Células Intersticiales del Testículo/metabolismo , Humanos , Testículo/metabolismo , Testículo/citología , Biomarcadores , Comunicación Celular , Animales
14.
Microb Pathog ; 54: 20-5, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22982140

RESUMEN

TLR4 is a membrane sensor for lipopolysaccharide (LPS), a major cell wall component of gram-negative bacteria. In this study, we investigated the role of TLR4 on innate immune responses in immune cells against Acinetobacter baumannii. Bone marrow-derived macrophages (BMDMs) and dendritic cells (BMDCs) were isolated from WT and TLR4-deficient mice and infected with A. baumannii ATCC 15150. ELISA assay revealed that the production of IL-6 and TNF-α by A. baumannii was impaired in TLR4-deficient macrophages. However, absence of TLR2 did not affect A. baumannii-induced cytokines production in BMDMs. In addition, TLR4 was required for the optimal production of IL-6, TNF-α, and IL-12 in BMDCs in response to A. baumannii. Western blot analysis showed that A. baumannii leads to the activation of NF-κB and MAPKs (p38, ERK, and JNK) in macrophages via TLR4-dependent pathway. mRNA expression of iNOS and NO production was elicited in WT BMDMs in response to A. baumannii, which was abolished in TLR4-deficienct cells. Bacterial killing ability against A. baumannii was impaired in TLR4-deficient BMDMs. In addition, A. baumannii induced apoptosis in BMDMs via TLR4-independent pathway. Our results demonstrate that TLR4 is essential for initiating innate immune response of macrophages against A. baumannii infection.


Asunto(s)
Acinetobacter baumannii/inmunología , Células Dendríticas/inmunología , Macrófagos/inmunología , Receptor Toll-Like 4/inmunología , Animales , Apoptosis , Western Blotting , Células Cultivadas , Células Dendríticas/microbiología , Ensayo de Inmunoadsorción Enzimática , Perfilación de la Expresión Génica , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Quinasas de Proteína Quinasa Activadas por Mitógenos/biosíntesis , FN-kappa B/biosíntesis , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Receptor Toll-Like 4/deficiencia , Factor de Necrosis Tumoral alfa/metabolismo
15.
Biomater Res ; 27(1): 33, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085887

RESUMEN

BACKGROUND: The endometrium, the inner lining of the uterine cavity, plays essential roles in embryo implantation and its subsequent development. Although some positive results were preliminarily archived, the regeneration of damaged endometrial tissues by administrating stem cells only is very challenging due to the lack of specific microenvironments and their low attachment rates at the sites of injury. In this context, various biomaterial-based scaffolds have been used to overcome these limitations by providing simple structural support for cell attachment. However, these scaffold-based strategies also cannot properly reflect patient tissue-specific structural complexity and thus show only limited therapeutic effects. METHOD: Therefore, in the present study, we developed a customizable Lego-like multimodular endometrial tissue architecture by assembling individually fabricated tissue blocks. RESULTS: Each tissue block was fabricated by incorporating biodegradable biomaterials and certain endometrial constituent cells. Each small tissue block was effectively fabricated by integrating conventional mold casting and 3D printing techniques. The fabricated individual tissue blocks were properly assembled into a larger customized tissue architecture. This structure not only properly mimics the patient-specific multicellular microenvironment of the endometrial tissue but also properly responds to key reproductive hormones in a manner similar to the physiological functions. CONCLUSION: This customizable modular tissue assembly allows easy and scalable configuration of a complex patient-specific tissue microenvironment, thus accelerating various tissue regeneration procedures.

16.
Cell Biol Int ; 36(3): 279-88, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21966929

RESUMEN

Implantation of bone-marrow-derived MSCs (mesenchymal stem cells) has emerged as a potential treatment modality for liver failure, but in vivo differentiation of MSCs into functioning hepatocytes and its therapeutic effects have not yet been determined. We investigated MSC differentiation process in a rat model of TAA (thioacetamide)-induced liver cirrhosis. Male Sprague-Dawley rats were administered 0.04% TAA-containing water for 8 weeks, MSCs were injected into the spleen for transsplenic migration into the liver, and liver tissues were examined over 3 weeks. Ingestion of TAA for 8 weeks induced micronodular liver cirrhosis in 93% of rats. Injected MSCs were diffusely engrafted in the liver parenchyma, differentiated into CK19 (cytokeratin 19)- and thy1-positive oval cells and later into albumin-producing hepatocyte-like cells. MSC engraftment rate per slice was measured as 1.0-1.6%. MSC injection resulted in apoptosis of hepatic stellate cells and resultant resolution of fibrosis, but did not cause apoptosis of hepatocytes. Injection of MSCs treated with HGF (hepatocyte growth factor) in vitro for 2 weeks, which became CD90-negative and CK18-positive, resulted in chronological advancement of hepatogenic cellular differentiation by 2 weeks and decrease in anti-fibrotic activity. Early differentiation of MSCs to progenitor oval cells and hepatocytes results in various therapeutic effects, including repair of damaged hepatocytes, intracellular glycogen restoration and resolution of fibrosis. Thus, these results support that the in vivo hepatogenic differentiation of MSCs is related to the beneficial effects of MSCs rather than the differentiated hepatocytes themselves.


Asunto(s)
Diferenciación Celular , Hepatocitos/citología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Células Madre Mesenquimatosas/citología , Tioacetamida/farmacología , Animales , Hepatocitos/metabolismo , Hígado/citología , Hígado/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratas , Ratas Sprague-Dawley
17.
Hepatogastroenterology ; 59(117): 1512-5, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22683968

RESUMEN

BACKGROUND/AIMS: Hepatocellular carcinoma (HCC) often recurs after complete surgical resection. Detection of markers of residual circulating cancer cells may predict postoperative HCC recurrence. Human telomerase reverse transcriptase (hTERT) mRNA may be a candidate tumor marker. METHODOLOGY: We prospectively assessed the expression patterns and prognostic value of preoperative peripheral blood hTERT mRNA in patients with HCC undergoing hepatic resection (n=17) or liver transplantation (n=6). As controls, we assessed hTERT mRNA in patients with liver cirrhosis without HCC (n=6) and in living liver donors (n=4). Concentrations of hTERT mRNA were measured by real-time quantitative reverse transcription polymerase chain reaction (RTPCR). RESULTS: No significant difference was observed in the levels of hTERT mRNA between the HCC and control groups. Only alpha-fetoprotein ≥400ng/mL was associated with greater expression levels of hTERT mRNA. At a median follow-up of 30 months, HCC recurred in 10 of 17 resected patients, but in none of the 6 liver transplant recipients. hTERT mRNA concentration was not associated with HCC recurrence after either resection or liver transplantation. CONCLUSIONS: Peripheral blood hTERT mRNA concentration is not a likely marker for the diagnosis or prognosis of HCC, especially in patients undergoing resection. Owing to the small number of transplanted patients assessed, the clinical significance of hTERT mRNA concentration was not objectively verified, suggesting the need for a study in larger numbers of HCC patients undergoing liver transplantation.


Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/sangre , Neoplasias Hepáticas/sangre , Recurrencia Local de Neoplasia/sangre , ARN Mensajero/sangre , Telomerasa/sangre , Anciano , Carcinoma Hepatocelular/cirugía , Femenino , Hepatectomía , Humanos , Cirrosis Hepática/sangre , Cirrosis Hepática/cirugía , Neoplasias Hepáticas/cirugía , Trasplante de Hígado , Masculino , Persona de Mediana Edad , Neoplasia Residual , Células Neoplásicas Circulantes , Valor Predictivo de las Pruebas , Periodo Preoperatorio , Estadísticas no Paramétricas
18.
Exp Mol Med ; 54(9): 1524-1535, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36117220

RESUMEN

Follicle-stimulating hormone (FSH) promotes the production and secretion of estrogen, which in turn stimulates the growth and maturation of ovarian follicles. Therefore, consecutive FSH treatment to induce ovarian hyperstimulation (superovulation) is still considered the most cost-effective option for the majority of assisted reproductive technologies (ARTs). However, a relatively high cancellation rate and subsequent low pregnancy outcomes (approximately 15%) are the most challenging aspects of this FSH-based ART. Currently, the main cause for this low implantation rate of FSH-based ART has not yet been revealed. Therefore, we hypothesized that these high cancellation rates with FSH-based superovulation protocols might be associated with the harmful effects of consecutive FSH treatment. Importantly, several recent studies have revealed that tissue-resident stem cell deficiency can significantly reduce cyclic endometrial regeneration and subsequently decrease the pregnancy outcome. In this context, we investigated whether FSH treatment could directly inhibit endometrial stem cell functions and consequently suppress endometrial regeneration. Consistent with our hypothesis, our results revealed for the first time that FSH could inhibit various regeneration-associated functions of endometrial stem cells, such as self-renewal, migration, and multilineage differentiation capacities, via the PI3K/Akt and ERK1/2 signaling pathways both in vitro and in vivo.


Asunto(s)
Hormona Folículo Estimulante , Proteínas Relacionadas con la Folistatina , Estrógenos/farmacología , Femenino , Fertilización In Vitro/métodos , Hormona Folículo Estimulante/farmacología , Humanos , Fosfatidilinositol 3-Quinasas , Embarazo , Proteínas Proto-Oncogénicas c-akt , Células Madre
19.
Cell Death Dis ; 13(7): 605, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831270

RESUMEN

Luteinizing hormone (LH) stimulates the synthesis and secretion of the key steroid hormone estrogen, which subsequently promotes ovarian follicular growth and development. Therefore, the administration of exogenous LH to achieve superovulation (multiple ovulations) and an LH surge is commonly used as the most effective therapeutic option in a majority of in vitro fertilization (IVF) clinics. However, a relatively low pregnancy rate (between 20% and 35%) is one of the most challenging aspects of LH-based infertility treatment. Furthermore, the major cause of this low pregnancy rate in LH-based infertility treatment remains unidentified. Recent studies have shown that endometrial stem cell loss or deficiency can significantly decrease tissue regeneration ability during the menstrual cycle and reduce endometrial receptivity. In this context, we postulated that the low pregnancy rates following LH-based ovarian hyperactivation may be the result of the adverse effects of consecutive exogenous LH administration on endometrial stem cells. To the best of our knowledge, this study revealed for the first time that in addition to its previously reported roles in stimulating ovarian functions through the pituitary-gonadal axis, LH brings about the extragonadal suppression of various tissue regeneration-associated functions in endometrial stem cells, such as self-renewal, migration ability, multilineage differentiation potential, and pluripotency/stemness, by inhibiting pro-survival Akt and ERK1/2 signaling pathways in vitro and in vivo, and as a consequence, it decreases the endometrial receptivity.


Asunto(s)
Infertilidad , Hormona Luteinizante , Endometrio/metabolismo , Estradiol/farmacología , Femenino , Fertilización In Vitro , Hormona Folículo Estimulante/metabolismo , Humanos , Hormona Luteinizante/farmacología , Embarazo , Células Madre/metabolismo
20.
Stem Cell Res Ther ; 13(1): 404, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35932085

RESUMEN

BACKGROUND: Smokers directly inhale mainstream cigarette smoke, which contains numerous known and potential toxic substances, and thus, smoking is expected to have broad harmful effects that cause tissue injury and dysfunction. Interestingly, many studies have suggested that the recent decline in female fertility and increased rate of spontaneous abortion could be associated with increased smoking rates. Indeed, women that smoked for 10 years or more were reported to have a ~ 20% higher infertility rate than women that had never smoked. However, the reasons for the underlying harmful aspects of smoking on female fertility remain a matter of debate. Importantly, a previous study revealed that resident endometrial stem cell deficiency significantly limits the cyclic regeneration potential of endometrium, which, in turn, decreases successful pregnancy outcomes. In this context, we postulated that exposure to mainstream cigarette smoke extracts might decrease female fertility by inhibiting the functions of resident endometrial stem cells. METHODS: We investigated whether cigarette mainstream smoke exposure directly inhibits various tissue regeneration-associated functions of endometrial stem cells, such as self-renewal, migration, pluripotency, and differentiation capacity in vitro. Next, we determined whether SERPINB2 mediates cigarette smoke-induced suppressive effects on various tissue regeneration-associated functions by depleting SERPINB2 expression with specific shRNA targeting SERPINB2. Mice were injected intraperitoneally with low (0.5 mg/kg) or high (1 mg/kg) doses of cigarette smoke extract (10 times for two weeks), and endometrial stem cells were then isolated from mice uterine tissues. RESULTS: We found that exposure to cigarette smoke extracts remarkably suppressed various tissue regeneration-associated functions of endometrial stem cells, such as self-renewal, migration, multilineage differentiation ability, and pluripotency in vitro and in vivo by activating the SERPINB2 gene. Indeed, cigarette smoke-induced inhibitory effects on various endometrial stem cell functions were significantly abolished by SERPINB2 knockdown. CONCLUSIONS: These findings provide valuable information on the harmful effects of cigarette smoking on resident endometrial stem cells and hopefully will facilitate the developments of promising therapeutic strategies for subfertile or infertile women that smoke cigarettes.


Asunto(s)
Infertilidad Femenina , Animales , Diferenciación Celular/genética , Endometrio , Femenino , Humanos , Infertilidad Femenina/metabolismo , Ratones , Embarazo , Fumar/efectos adversos , Fumar/genética , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA