Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37958885

RESUMEN

A lot of nanomaterials have been applied to various nano-biotechnological fields, such as contrast agents, drug or gene delivery systems, cosmetics, and so on. Despite the expanding usage of nanomaterials, concerns persist regarding their potential toxicity. To address this issue, many scientists have tried to develop biocompatible nanomaterials containing phytochemicals as a promising solution. In this study, we synthesized biocompatible nanomaterials by using gallic acid (GA), which is a phytochemical, and coating it onto the surface of iron oxide nanoparticles (IONPs). Importantly, the GA-modified iron oxide nanoparticles (GA-IONPs) were successfully prepared through environmentally friendly methods, avoiding the use of harmful reagents and extreme conditions. The presence of GA on the surface of IONPs improved their stability and bioactive properties. In addition, cell viability assays proved that GA-IONPs possessed excellent biocompatibility in human dermal papilla cells (HDPCs). Additionally, GA-IONPs showed antioxidant activity, which reduced intracellular reactive oxygen species (ROS) levels in an oxidative stress model induced by hydrogen peroxide (H2O2). To investigate the impact of GA-IONPs on exosome secretions from oxidative stress-induced cells, we analyzed the number and characteristics of exosomes in the culture media of HDPCs after H2O2 stimulation or GA-IONP treatment. Our analysis revealed that both the number and proportions of tetraspanins (CD9, CD81, and CD63) in exosomes were similar in the control group and the GA-IONP-treated groups. In contrast, exosome secretion was increased, and the proportion of tetraspanin was changed in the H2O2-treated group compared to the control group. It demonstrated that treatment with GA-IONPs effectively attenuated exosome secretion induced by H2O2-induced oxidative stress. Therefore, this GA-IONP exhibited outstanding promise for applications in the field of nanobiotechnology.


Asunto(s)
Antioxidantes , Nanopartículas , Humanos , Antioxidantes/farmacología , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Especies Reactivas de Oxígeno , Nanopartículas Magnéticas de Óxido de Hierro , Nanopartículas/química , Compuestos Férricos/farmacología , Compuestos Férricos/química
2.
Int J Oncol ; 51(5): 1541-1552, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29048658

RESUMEN

Numerous studies implicate miR-146a as pleiotropic regulator of carcinogenesis; however, its roles in carcinogenesis are not fully understood. A clue from expression analyses of miR-146a-5p in all 13 oral squamous cell carcinoma (OSCC) cell lines examined and in OSCC tissues, whole blood and whole saliva of OSCC patients in vivo revealed that miR­146a-5p expression was highly upregulated. Particularly, we widened the view of its upregulation in saliva, implicating that high miR-146a-5p expression is not only correlated closely to the development of human oral cancer, but also to a possible candidate as a diagnostic marker of OSCC. Indeed, further examination showed that exogenous miR-146a-5p expression showed pleiotropic effects on cell proliferation and apoptosis which were partially based on the contextual responses of activation of JNK, downstream of TRAF6 that was targeted by miR-146a-5p in normal human keratinocytes and OSCC cell lines. TRAF6 suppression by a TRAF6-specific siRNA resulted in contradictory consequences on cellular processes in normal and OSCC cells. Notably, TRAF6 downregulation by both miR-146a-5p and TRAF6-specific siRNA deactivated JNK in SCC-9, but not in normal human keratinocytes. In support of the proliferation-promoting effect of miR-146a-5p, silencing of endogenous miR-146a-5p significantly reduced proliferation of SCC-9. Together, these results suggest that miR-146a-5p affects proliferation and apoptosis in a cellular context-dependent manner and selectively disarms the TRAF6-mediated branch of the TGF-ß signaling in OSCC cell lines by sparing Smad4 involvement.


Asunto(s)
Carcinoma de Células Escamosas/genética , MicroARNs/genética , Neoplasias de la Boca/genética , Factor 6 Asociado a Receptor de TNF/genética , Apoptosis/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Variación Genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Neoplasias de la Boca/patología , ARN Interferente Pequeño , Proteína Smad4/genética , Factor de Crecimiento Transformador beta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA