Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(2): 110-121, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-37769355

RESUMEN

The c.453delC (p.Thr152Profs*14) frameshift mutation in KCNH2 is associated with an elevated risk of Long QT syndrome (LQTS) and fatal arrhythmia. Nevertheless, the loss-of-function mechanism underlying this mutation remains unexplored and necessitates an understanding of electrophysiology. To gain insight into the mechanism of the LQT phenotype, we conducted whole-cell patch-clamp and immunoblot assays, utilizing both a heterologous expression system and patient-derived induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) with 453delC-KCNH2. We also explored the site of translational reinitiation by employing LC/MS mass spectrometry. Contrary to the previous assumption of early termination of translation, the findings of this study indicate that the 453delC-KCNH2 leads to an N-terminally truncated hERG channel, a potential from a non-canonical start codon, with diminished expression and reduced current (IhERG). The co-expression with wildtype KCNH2 produced heteromeric hERG channel with mild dominant-negative effect. Additionally, the heterozygote patient-derived iPSC-CMs exhibited prolonged action potential duration and reduced IhERG, which was ameliorated with the use of a hERG activator, PD-118057. The results of our study offer novel insights into the mechanisms involved in congenital LQTS associated with the 453delC mutation of KCNH2. The mutant results in the formation of less functional N-terminal-truncated channels with reduced amount of membrane expression. A hERG activator is capable of correcting abnormalities in both the heterologous expression system and patient-derived iPSC-CMs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Humanos , Miocitos Cardíacos/metabolismo , Mutación del Sistema de Lectura , Células Madre Pluripotentes Inducidas/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Heterocigoto , Mutación , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo
2.
Korean J Physiol Pharmacol ; 28(4): 313-322, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38926839

RESUMEN

Mutations within the SCN5A gene, which encodes the α-subunit 5 (NaV1.5) of the voltage-gated Na+ channel, have been linked to three distinct cardiac arrhythmia disorders: long QT syndrome type 3, Brugada syndrome (BrS), and cardiac conduction disorder. In this study, we have identified novel missense mutations (p.A385T/R504T) within SCN5A in a patient exhibiting overlap arrhythmia phenotypes. This study aims to elucidate the functional consequences of SCN5A mutants (p.A385T/R504T) to understand the clinical phenotypes. Whole-cell patch-clamp technique was used to analyze the NaV1.5 current (INa) in HEK293 cells transfected with the wild-type and mutant SCN5A with or without SCN1B co-expression. The amplitude of INa was not altered in mutant SCN5A (p.A385T/R504T) alone. Furthermore, a rightward shift of the voltage-dependent inactivation and faster recovery from inactivation was observed, suggesting a gain-of-function state. Intriguingly, the coexpression of SCN1B with p.A385T/R504T revealed significant reduction of INa and slower recovery from inactivation, consistent with the loss-of-function in Na+ channels. The SCN1B dependent reduction of INa was also observed in a single mutation p.R504T, but p.A385T co-expressed with SCN1B showed no reduction. In contrast, the slower recovery from inactivation with SCN1B was observed in A385T while not in R504T. The expression of SCN1B is indispensable for the electrophysiological phenotype of BrS with the novel double mutations; p.A385T and p.R504T contributed to the slower recovery from inactivation and reduced current density of NaV1.5, respectively.

3.
Korean J Parasitol ; 60(3): 163-172, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35772734

RESUMEN

Kinesin-13 (Kin-13), a depolymerizer of microtubule (MT), has been known to affect the length of Giardia. Giardia Kin-13 (GlKin-13) was localized to axoneme, flagellar tips, and centrosomes, where phosphorylated forms of Giardia polo-like kinase (GlPLK) were distributed. We observed the interaction between GlKin-13 and GlPLK via co-immunoprecipitation using transgenic Giardia cells expressing Myc-tagged GlKin-13, hemagglutinin-tagged GlPLK, and in vitro-synthesized GlKin-13 and GlPLK proteins. In vitro-synthesized GlPLK was demonstrated to auto-phosphorylate and phosphorylate GlKin-13 upon incubation with [γ-32P]ATP. Morpholino-mediated depletion of both GlKin-13 and GlPLK caused an extension of flagella and a decreased volume of median bodies in Giardia trophozoites. Our results suggest that GlPLK plays a pertinent role in formation of flagella and median bodies by modulating MT depolymerizing activity of GlKin-13.


Asunto(s)
Giardia lamblia , Animales , Flagelos/metabolismo , Giardia , Giardia lamblia/genética , Giardia lamblia/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Trofozoítos/metabolismo
4.
Stem Cells ; 37(5): 623-630, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30721559

RESUMEN

The derivation of human embryonic stem cells (hESCs) by somatic cell nuclear transfer (SCNT) has prompted a re-emerging interest in using such cells for therapeutic cloning. Despite recent advancements in derivation protocols, the functional potential of CHA-NT4 derived cells is yet to be elucidated. For this reason, this study sought to differentiate CHA-NT4 cells toward an endothelial lineage in order to evaluate in vitro and in vivo functionality. To initial differentiation, embryoid body formation of CHA-NT4 was mediated by concave microwell system which was optimized for hESC-endothelial cell (EC) differentiation. The isolated CD31+ cells exhibited hallmark endothelial characteristics in terms of morphology, tubule formation, and ac-LDL uptake. Furthermore, CHA-NT4-derived EC (human nuclear transfer [hNT]-ESC-EC) transplantation in hind limb ischemic mice rescued the hind limb and restored blood perfusion. These findings suggest that hNT-ESC-EC are functionally equivalent to hESC-ECs, warranting further study of CHA-NT4 derivatives in comparison to other well established pluripotent stem cell lines. This revival of human SCNT-ESC research may lead to interesting insights into cellular behavior in relation to donor profile, mitochondrial DNA, and oocyte quality. Stem Cells 2019;37:623-630.


Asunto(s)
Diferenciación Celular/genética , Células Endoteliales/trasplante , Células Madre Embrionarias Humanas/trasplante , Células Madre Pluripotentes Inducidas/trasplante , Animales , Miembro Posterior/patología , Miembro Posterior/trasplante , Humanos , Isquemia/terapia , Ratones , Técnicas de Transferencia Nuclear
5.
Korean J Parasitol ; 58(6): 675-679, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33412772

RESUMEN

MYB2 protein was identified as a transcription factor that showed encystation-induced expression in Giardia lamblia. Although nuclear import is essential for the functioning of a transcription factor, an evident nuclear localization signal (NLS) of G. lamblia MYB2 (GlMYB2) has not been defined. Based on putative GlMYB2 NLSs predicted by 2 programs, a series of plasmids expressing hemagglutinin (HA)-tagged GlMYB2 from the promoter of G. lamblia glutamate dehydrogenase were constructed and transfected into Giardia trophozoites. Immunofluorescence assays using anti-HA antibodies indicated that GlMYB2 amino acid sequence #507-#530 was required for the nuclear localization of GlMYB2, and this sequence was named as NLSGlMYB2. We further verified this finding by demonstrating the nuclear location of a protein obtained by the fusion of NLSGlMYB2 and G. lamblia glyceraldehyde 3-phosphate dehydrogenase, a non-nuclear protein. Our data on GlMYB2 will expand our understanding on NLSs functioning in G. lamblia.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Expresión Génica , Giardia lamblia/crecimiento & desarrollo , Giardia lamblia/fisiología , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Enquistamiento de Parásito/genética , Transactivadores/genética , Transactivadores/metabolismo , Secuencia de Aminoácidos , Giardia lamblia/enzimología , Glutamato Deshidrogenasa , Gliceraldehído 3-Fosfato , Hemaglutininas , Transactivadores/química
6.
Microvasc Res ; 126: 103912, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31433972

RESUMEN

Critical limb ischemia is one of the most common types of peripheral arterial disease. Preclinical development of ischemia therapeutics relies on the availability of a relevant and reproducible in vivo disease model. Thus, establishing appropriate animal disease models is essential for the development of new therapeutic strategies. Currently, the most commonly employed model of hindlimb ischemia is the surgical induction method with ligation of the femoral artery and its branches after skin incision. However, the efficiency of the method is highly variable depending on the availability of skilled technicians. In addition, after surgical procedures, animals can quickly and spontaneously recover from damage, limiting observations of the therapeutic effect of potential agents. The aim of this study was to develop a hindlimb ischemia mouse model with similarities to human ischemic disease. To that end, a photochemical reaction was used to induce thrombosis in the hindlimb. After the photochemical reaction was induced by light irradiation, thrombotic plugs and adjacent red blood cell stasis were observed in hindlimb vessels in the light-irradiated zone. Additionally, the photochemically induced thrombosis maintained the ischemic condition and did not cause notable side effects in mice.


Asunto(s)
Eritrosina , Isquemia/fisiopatología , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica , Trombosis/fisiopatología , Animales , Velocidad del Flujo Sanguíneo , Modelos Animales de Enfermedad , Miembro Posterior , Isquemia/inducido químicamente , Luz , Masculino , Ratones Endogámicos ICR , Procesos Fotoquímicos , Flujo Sanguíneo Regional , Trombosis/inducido químicamente , Factores de Tiempo
7.
Korean J Parasitol ; 57(2): 185-189, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31104412

RESUMEN

To identify the component(s) involved in cell cycle control in the protozoan Giardia lamblia, cells arrested at the G1/S- or G2-phase by treatment with nocodazole and aphidicolin were prepared from the synchronized cell cultures. RNA-sequencing analysis of the 2 stages of Giardia cell cycle identified several cell cycle genes that were up-regulated at the G2-phase. Transcriptome analysis of cells in 2 distinct cell cycle stages of G. lamblia confirmed previously reported components of cell cycle (PcnA, cyclin B, and CDK) and identified additional cell cycle components (NEKs, Mad2, spindle pole protein, and CDC14A). This result indicates that the cell cycle machinery operates in this protozoan, one of the earliest diverging eukaryotic lineages.


Asunto(s)
Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Fase G2/genética , Giardia lamblia/crecimiento & desarrollo , Giardia lamblia/genética , Regulación hacia Arriba , Antiprotozoarios/metabolismo , Afidicolina/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Giardia lamblia/efectos de los fármacos , Nocodazol/metabolismo , Análisis de Secuencia de ARN
8.
Korean J Parasitol ; 57(3): 225-232, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31284344

RESUMEN

Innate lymphoid cells (ILCs) are key players during an immune response at the mucosal surfaces, such as lung, skin, and gastrointestinal tract. Giardia lamblia is an extracellular protozoan pathogen that inhabits the human small intestine. In this study, ILCs prepared from the lamina propria of mouse small intestine were incubated with G. lamblia trophozoites. Transcriptional changes in G. lamblia-exposed ILCs resulted in identification of activation of several immune pathways. Secretion of interleukin (IL)-17A, IL-17F, IL-1ß, and interferon-γ was increased, whereas levels of IL-13, IL-5, and IL22, was maintained or reduced upon exposure to G. lamblia. Goup 3 ILC (ILC3) was found to be dominant amongst the ILCs, and increased significantly upon co-cultivation with G. lamblia trophozoites. Oral inoculation of G. lamblia trophozoites into mice resulted in their presence in the small intestine, of which, the highest number of parasites was detected at the 5 days-post infection. Increased ILC3 was observed amongst the ILC population at the 5 days-post infection. These findings indicate that ILC3 from the lamina propria secretes IL-17 in response to G. lamblia, leading to the intestinal pathology observed in giardiasis.


Asunto(s)
Giardia lamblia/fisiología , Giardiasis/inmunología , Interleucina-17/inmunología , Linfocitos/inmunología , Membrana Mucosa/parasitología , Animales , Células Cultivadas , Giardiasis/genética , Giardiasis/parasitología , Humanos , Inmunidad Innata , Interleucina-17/genética , Linfocitos/parasitología , Ratones , Ratones Endogámicos C57BL , Membrana Mucosa/inmunología
9.
Korean J Parasitol ; 57(2): 201-206, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31104415

RESUMEN

The roles of mast cells in allergic diseases and helminth infections are well known. However, the roles of mast cells in T. gondii infection is poorly understood. This study was focused on the production of pro-inflammatory cytokines (TNF-α, IL-4), chemokines (CXCL8, MCP-1) and nitric oxide (NO) by mast cells in response to soluble lysate of T. gondii tachyzoites. Production of CXCL8 (IL-8), MCP-1, TNF-α and IL-4 were measured by RT-PCR and ELISA. Western blot were used for detection of CXCR-1 and CXCR2. Our results showed that T. gondii lysates triggered mast cells to release CXCL8, MCP-1, TNF-α, IL-4 and to produce NO. This suggests that mast cells play an important role in inflammatory responses to T. gondii.


Asunto(s)
Mezclas Complejas/inmunología , Citocinas/metabolismo , Mastocitos/metabolismo , Óxido Nítrico/metabolismo , Toxoplasma/inmunología , Western Blotting , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Stem Cells ; 35(9): 2037-2049, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28543863

RESUMEN

Basic fibroblast growth factor (bFGF) supplementation is critical to maintain the pluripotency of human pluripotent stem cells (hPSCs) through activation of PI3K/AKT, rather than MEK/ERK pathway. Thus, elaborate molecular mechanisms that preserve PI3K/AKT signaling upon bFGF stimulation may exist in hPSCs. Protein arginine methyltransferase 8 (PRMT8) was expressed and then its level gradually decreased during spontaneous differentiation of human embryonic stem cells (hESCs). PRMT8 loss- or gain-of-function studies demonstrated that PRMT8 contributed to longer maintenance of hESC pluripotency, even under bFGF-deprived conditions. Direct interaction of membrane-localized PRMT8 with p85, a regulatory subunit of PI3K, was associated with accumulation of phosphoinositol 3-phosphate and consequently high AKT activity. Furthermore, the SOX2 induction, which was controlled by the PRMT8/PI3K/AKT axis, was linked to mesodermal lineage differentiation. Thus, we propose that PRMT8 in hESCs plays an important role not only in maintaining pluripotency but also in controlling mesodermal differentiation through bFGF signaling toward the PI3K/AKT/SOX2 axis. Stem Cells 2017;35:2037-2049.


Asunto(s)
Linaje de la Célula , Células Madre Embrionarias Humanas/metabolismo , Proteínas de la Membrana/metabolismo , Mesodermo/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Células Madre Pluripotentes/citología , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Biológicos , Fenotipo , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
11.
J Eukaryot Microbiol ; 64(4): 464-480, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27859890

RESUMEN

Giardia lamblia is a unicellular organism, showing a polarity with two nuclei and cytoskeletal structures. Accurate positioning of these organelles is essential for division of G. lamblia, which is poorly understood. Giardia lamblia end-binding 1 (GlEB1) protein and G. lamblia aurora kinase (GlAK) have been shown to modulate microtubule (MT) distribution during cytokinesis. A direct association between GlEB1 and GlAK was demonstrated. Like GlEB1, GlAK was also found at nuclear envelopes and median bodies of G. lamblia. In vitro kinase assays using Giardia lysates immunoprecipitated with anti-GlAK antibodies or recombinant GlAK suggested that GlEB1 is a substrate of GlAK. Site-directed mutagenesis indicated that threonine-205 in GlAK was auto-phosphorylated and that GlAK phosphorylated serine (Ser)-148 in GlEB1. Ectopic expression of a mutant GlEB1 (with conversion of Ser-148 into alanine of GlEB1) resulted in an increased number of Giardia cells with division defects. Treatment of G. lamblia with an AK inhibitor triggered cytokinesis defects, and ectopic expression of a phospho-mimetic mutant GlEB1 (with conversion of Ser-148 into aspartate) rescued the defects in Giardia cell division caused by the AK inhibitor. These results suggested that phosphorylation of GlEB1 played a role in cytokinesis in G. lamblia.


Asunto(s)
Aurora Quinasas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Giardia lamblia/fisiología , Serina/metabolismo , Citocinesis/efectos de los fármacos , Proteínas del Citoesqueleto/genética , Regulación de la Expresión Génica/efectos de los fármacos , Giardia lamblia/efectos de los fármacos , Giardia lamblia/metabolismo , Mutagénesis Sitio-Dirigida , Membrana Nuclear/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
12.
Korean J Parasitol ; 55(4): 375-384, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28877568

RESUMEN

Trichomonas vaginalis is a pathogen that triggers severe immune responses in hosts. T. vaginalis α-actinin 2, Tvα-actinin 2, has been used to diagnose trichomoniasis. This study was undertaken to examine the role of Tvα-actinin 2 as an antigenic molecule to induce immune responses from humans. Western blot analysis using anti-Tvα-actinin 2 antibodies indicated its presence in the secreted proteins of T. vaginalis. ELISA was employed to measure cytokine production by vaginal epithelial cells, prostate cells, mouse dendritic cells (DCs), or T cells stimulated with T. vaginalis or Tvα-actinin 2 protein. Both T. vaginalis and rTvα-actinin 2 induced cytokine production from epithelial cell lines, including IL-10. Moreover, CD4+CD25- regulatory T cells (Treg cells) incubated with rTvα-actinin 2-treated DCs produced high levels of IL-10. These data indicate that Tvα-actinin 2 modulates immune responses via IL-10 production by Treg cells.


Asunto(s)
Actinina/inmunología , Células Dendríticas/inmunología , Interacciones Huésped-Parásitos/inmunología , Interleucina-10/biosíntesis , Linfocitos T Reguladores/inmunología , Trichomonas vaginalis/inmunología , Animales , Anticuerpos Antiprotozoarios/inmunología , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/inmunología , Humanos , Ratones Endogámicos BALB C , Compuestos Orgánicos/inmunología
13.
Korean J Parasitol ; 55(2): 213-218, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28506046

RESUMEN

Most men infected with Trichomonas vaginalis are asymptomatic and can remain undiagnosed and untreated. This has been hypothesized to result in chronic persistent prostatic infection. Adhesion of the protozoan organisms to mucosal cells is considered a first and prerequisite step for T. vaginalis infection. Adhesion of T. vaginalis to prostate epithelial cells has not yet been observed; however, there are several reports about inflammation of prostate epithelial cells induced by T. vaginalis. The aim of this study was to investigate whether adhesion and cytotoxicity of T. vaginalis are involved in inflammation of prostate epithelial cells. When RWPE-1 cells were infected with T. vaginalis (1:0.4 or 1:4), adhesion of T. vaginalis continuously increased for 24 hr or 3 hr, respectively. The cytotoxicity of prostate epithelial cells infected with T. vaginalis (RWPE-1: T. vaginalis=1:0.4) increased at 9 hr; at an infection ratio of 1:4, cytotoxicity increased after 3 hr. When the RWPE-1 to T. vaginalis ratio was 1:0.4 or 1:4, production of IL-1ß, IL-6, CCL2, and CXCL8 also increased. Epithelial-mesenchymal transition (EMT) was verified by measuring decreased E-cadherin and increased vimentin expression at 24 hr and 48 hr. Taken together, the results indicate that T. vaginalis adhered to prostate epithelial cells, causing cytotoxicity, pro-inflammatory cytokine production, and EMT. Our findings suggest for the first time that T. vaginalis may induce inflammation via adhesion to normal prostate epithelial cells.


Asunto(s)
Células Epiteliales/parasitología , Próstata/parasitología , Trichomonas vaginalis/patogenicidad , Células Cultivadas , Citocinas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Transición Epitelial-Mesenquimal , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Próstata/citología , Prostatitis/parasitología , Factores de Tiempo , Tricomoniasis/parasitología
14.
Pflugers Arch ; 468(4): 609-22, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26687128

RESUMEN

Na(+)/Ca(2+) exchanger current (INCX) triggered by spontaneous Ca(2+) release from sarcoplasmic reticulum (SR) has been suggested as one of the cardiac pacemaker mechanisms ("Ca(2+) clock model"). In human embryonic stem cell-derived cardiomyocytes (hESC-CMs) showing spontaneous action potentials (APs), we found that substantial population (35 %) showed regular oscillation of inward currents (SICs) in nystatin-perforated voltage clamp between -40 and 40 mV (-80 ± 10.6 pA, at -20 mV). SICs were similarly observed between nodal, atrial, and ventricular hESC-CMs. Oscillations of [Ca(2+)]i synchronized with SICs were observed under voltage clamp. SICs were eliminated by lowering [Ca(2+)]e, L-type Ca(2+) channel (VOCCL) blocker (nifedipine, 10 µM), ryanodine receptor (RyR) agonist (caffeine, 10 mM), or NCX inhibitor (1 µM SN-6 and 10 µM KB-R7943). Plasma membrane expression of NCX1 was confirmed using immunofluorescence confocal microcopy. Both caffeine and SN-6 slowed the pacemaker potential but did not abolish the AP generation. The inhibitors of funny current (3 µM ivabradine) or voltage-gated K(+) channel currents (1 µM E4031 and 10 µM chromanol-293B) also did not abolish but slowed the pacemaker potential. In a computational model of cardiac pacemaker by Maltsev and Lakatta (2009), after modifying the spatial distribution of RyR, VOCCL, and NCX by using our multiparameter adjust algorithm, we could successfully reproduce spontaneous SR Ca(2+) release and SICs under voltage clamp. It was proposed that, under the membrane depolarization activating VOCCL, oscillatory Ca(2+) releases via RyR induce sharp increases in subsarcolemmal [Ca(2+)]i and inward INCX (SICs). Since the hESC-CMs without SICs still showed spontaneous APs, the putative "Ca(2+) clock" would provide a redundant pacemaker or augmenting mechanism in hESC-CMs.


Asunto(s)
Potenciales de Acción , Señalización del Calcio , Células Madre Embrionarias/citología , Miocitos Cardíacos/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias/metabolismo , Humanos , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Canales de Potasio de Rectificación Interna/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
15.
Mol Microbiol ; 97(2): 330-46, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25869813

RESUMEN

An exoprotease of Vibrio vulnificus, VvpS, exhibits an autolytic function during the stationary phase. To understand how vvpS expression is controlled, the regulators involved in vvpS transcription and their regulatory mechanisms were investigated. LeuO was isolated in a ligand-fishing experiment, and experiments using a leuO-deletion mutant revealed that LeuO represses vvpS transcription. LeuO bound the extended region including LeuO-binding site (LBS)-I and LBS-II. Further screening of additional regulators revealed that SmcR and cyclic adenosine monophosphate-receptor protein (CRP) play activating roles in vvpS transcription. SmcR and CRP bound the regions overlapping LBS-I and -II, respectively. In addition, the LeuO occupancy of LBS-I and LBS-II was competitively exchanged by SmcR and CRP, respectively. To examine the mechanism of stationary-phase induction of vvpS expression, in vivo levels of three transcription factors were monitored. Cellular level of LeuO was maximal at exponential phase, while those of SmcR and CRP were maximal at stationary phase and relatively constant after the early-exponential phase, respectively. Thus, vvpS transcription was not induced during the exponential phase by high cellular content of LeuO. When entering the stationary phase, however, LeuO content was significantly reduced and repression by LeuO was relieved through simultaneous binding of SmcR and CRP to LBS-I and -II, respectively.


Asunto(s)
Exopeptidasas/biosíntesis , Factores de Transcripción/metabolismo , Vibrio vulnificus/metabolismo , Proteínas Bacterianas/metabolismo , Inducción Enzimática , Exopeptidasas/genética , Exopeptidasas/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Unión Proteica , Serina Proteasas/biosíntesis , Serina Proteasas/genética , Serina Proteasas/metabolismo , Vibrio vulnificus/enzimología , Vibrio vulnificus/genética , Vibrio vulnificus/crecimiento & desarrollo
16.
Biochem Biophys Res Commun ; 479(4): 779-786, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27693784

RESUMEN

Labeling of stem cells aims to distinguish transplanted cells from host cells, understand in vivo fate of transplanted cells, particularly important in stem cell therapy. Adipose-derived mesenchymal stem cells (ASCs) are considered as an emerging therapeutic option for tissue regeneration, but much remains to be understood regarding the in vivo evidence. In this study, a simple and efficient cell labeling method for labeling and tracking of stem cells was developed based on bio-orthogonal copper-free click chemistry, and it was applied in a mouse hindlimb ischemia model. The human ASCs were treated with tetra-acetylated N-azidoacetyl-d-mannosamine (Ac4ManNAz) to generate glycoprotein with unnatural azide groups on the cell surface, and the generated azide groups were fluorescently labeled by specific binding of dibenzylcyclooctyne-conjugated Cy5 (DBCO-Cy5). The safe and long-term labeling of the hASCs by this method was first investigated in vitro. Then the DBCO-Cy5-hASCs were transplanted into the hindlimb ischemia mice model, and we could monitor and track in vivo fate of the cells using optical imaging system. We could clearly observe the migration potent of the hASCs toward the ischemic lesion. This approach to design and tailor new method for labeling of stem cells may be useful to provide better understanding on the therapeutic effects of transplanted stem cells into the target diseases.


Asunto(s)
Rastreo Celular/métodos , Isquemia/terapia , Células Madre Mesenquimatosas/citología , Tejido Adiposo/citología , Animales , Azidas/química , Química Clic/métodos , Modelos Animales de Enfermedad , Colorantes Fluorescentes/química , Miembro Posterior , Humanos , Imagenología Tridimensional , Isquemia/patología , Trasplante de Células Madre Mesenquimatosas , Ratones
17.
Wound Repair Regen ; 24(4): 686-94, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27237949

RESUMEN

As wound contraction in the cutaneous layer occurs rapidly in mice, mechanical means are typically used to deliberately expose the wound to properly investigate healing by secondary intention. Previously, silicon rings and splinting models were attempted to analyze histological recovery but prevention of surrounding epidermal cell migration and subsequent closure was minimal. Here, we developed an ideal chimney wound model to evaluate epidermal regeneration in murine under hESC-EC transplantation through histological analysis encompassing the three phases of regeneration: migration, proliferation, and remodeling. Human embryonic stem cell derived endothelial cells (hESC-EC) were transplanted due to possessing a well-known therapeutic effect in angiogenesis which also enhances epidermal repair to depict the process of regeneration. Following a standard 1 mm biopsy punch, a chimney manufactured by modifying a 1.7 mL microtube was simply inserted into the excisional wound to complete the modeling process. Under this model, the excisional wound remained fully exposed for 14 days and even after 4 weeks, only a thin transparent layer of epidermal tissue covered the wound site. This approach is able to more accurately depict epidermal repair in relation to histology while also being a user-friendly and cost-effective way to mimic human recovery in rodents and evaluate epithelial repair induced by a form of therapy.


Asunto(s)
Células Endoteliales/metabolismo , Células Madre Embrionarias Humanas/trasplante , Regeneración/fisiología , Trasplante de Células Madre/métodos , Cicatrización de Heridas/fisiología , Heridas Penetrantes/fisiopatología , Animales , Colágeno Tipo VIII/metabolismo , Análisis Costo-Beneficio , Modelos Animales de Enfermedad , Células Endoteliales/citología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Heridas Penetrantes/terapia
18.
Korean J Parasitol ; 54(4): 461-9, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27658598

RESUMEN

Giardia lamblia is a protozoan that causes diarrheal diseases in humans. Cytoskeletal structures of Giardia trophozoites must be finely reorganized during cell division. To identify Giardia proteins which interact with microtubules (MTs), Giardia lysates were incubated with in vitro-polymerized MTs and then precipitated by ultracentifugation. A hypothetical protein (GL50803_8405) was identified in the precipitated fraction with polymerized MTs and was named GlMBP1 (G. lamblia microtubule-binding protein 1). Interaction of GlMBP1 with MTs was confirmed by MT binding assays using recombinant GlMBP1 (rGlMBP1). In vivo expression of GlMBP1 was shown by a real-time PCR and western blot analysis using anti-rGlMBP1 antibodies. Transgenic G. lamblia trophozoites were constructed by integrating a chimeric gene encoding hemagglutinin (HA)-tagged GlMBP1 into a Giardia chromosome. Immunofluorescence assays of this transgenic G. lamblia, using anti-HA antibodies, revealed that GlMBP1 mainly localized at the basal bodies, axonemes, and median bodies of G. lamblia trophozoites. This result indicates that GlMBP1 is a component of the G. lamblia cytoskeleton.


Asunto(s)
Proteínas Portadoras/análisis , Giardia lamblia/química , Microtúbulos/metabolismo , Western Blotting , Proteínas Portadoras/genética , Clonación Molecular , Expresión Génica , Perfilación de la Expresión Génica , Microscopía Fluorescente , Orgánulos/química , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Ultracentrifugación
19.
Liver Transpl ; 21(9): 1186-94, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25761987

RESUMEN

The study was designed (1) to examine the hypothesis that circulating progenitor cells play a role in the process of de novo regeneration in human liver transplants and that these cells arise from a cell population originating in, or associated with, the bone marrow and (2) to investigate whether the transplanted liver volume has an effect on the circulating recipient-derived progenitor cells that generate hepatocytes during this process. Clinical data and liver tissue characteristics were analyzed in male individuals who underwent sex-mismatched adult-to-adult living donor liver transplantation using dual left lobe grafts. Dual left lobe grafts were examined at the time of transplantation and 19 to 27 days after transplantation. All recipients showed recovery of normal liver function and a significant increase in the volume of the engrafted left lobes after transplantation. Double staining for a Y-chromosome probe and the CD31 antigen showed the presence of hybrid vessels composed of recipient-derived cells and donor cells within the transplanted liver tissues. Furthermore, CD34-expressing cells were observed commingling with Y-chromosome+ cells. The ratio of recipient-derived vessels and the number of Y+ CD34+ cells tended to be higher when smaller graft volumes underwent transplantation. These findings suggest that the recruitment of circulating bone marrow-derived progenitor cells could contribute to vessel formation and de novo regeneration in human liver transplants. Moreover, graft volume may be an important determinant for the active mobilization of circulating recipient-derived progenitor cells and their contribution to liver regeneration.


Asunto(s)
Células de la Médula Ósea/patología , Diferenciación Celular , Hepatocitos/patología , Regeneración Hepática , Trasplante de Hígado/métodos , Hígado/patología , Hígado/cirugía , Células Madre/patología , Adulto , Antígenos CD34/metabolismo , Células de la Médula Ósea/metabolismo , Cromosomas Humanos Y , Femenino , Marcadores Genéticos , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Células Madre/metabolismo , Factores de Tiempo , Resultado del Tratamiento
20.
BMC Microbiol ; 15: 86, 2015 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-25887971

RESUMEN

BACKGROUND: VarS/VarA is one of the global factors regulating diverse aspects of the metabolism and virulence of bacteria including pathogenic Vibrio spp. An experiment to identify the VarS/VarA-regulon in V. vulnificus revealed that a putative LuxR-type transcriptional regulator was down-regulated in ΔvarA mutant. To investigate the roles of this regulatory cascade, the target gene regulated by a LuxR-regulator was identified and its expression was characterized. RESULTS: Transcriptomic analysis of the mutant deficient in this LuxR-type regulator showed that the acsA gene encoding acetyl-CoA synthetase was down-regulated. Thus, this regulator was named AcsR for "regulator of acetyl-CoA synthetase". A putative histidine kinase gene, acsS, was located five ORFs downstream of the acsR gene. Expression of an acsA::luxAB transcriptional fusion was decreased in both ΔacsR and ΔacsS mutants. Similar to a ΔacsA mutant, strains carrying deletions either in acsR or acsS grew slowly than wild type in a minimal medium with acetate as a sole carbon source. Growth defect of the ΔacsR strain in acetate-minimal medium was restored by complementation. To investigate if AcsR directly regulates acsA expression, in vitro-gel shift assays were performed using the recombinant AcsR and the regulatory region of the acsA gene, showing that AcsR specifically bound the upstream region of the acsA ORF. CONCLUSION: This study indicates that the VarS/VarA system plays a role in V. vulnificus metabolism via regulating AcsR, which in turn controls acetate metabolism by activating the transcription of the acetyl-CoA synthetase gene.


Asunto(s)
Acetato CoA Ligasa/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/metabolismo , Vibrio vulnificus/enzimología , Fusión Artificial Génica , Medios de Cultivo/química , ADN Bacteriano/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Eliminación de Gen , Perfilación de la Expresión Génica , Genes Reporteros , Prueba de Complementación Genética , Luciferasas/análisis , Luciferasas/genética , Unión Proteica , Factores de Transcripción/deficiencia , Vibrio vulnificus/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA