Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(35): e2116505119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994650

RESUMEN

Albuminuria is a hallmark of glomerular disease of various etiologies. It is not only a symptom of glomerular disease but also a cause leading to glomerulosclerosis, interstitial fibrosis, and eventually, a decline in kidney function. The molecular mechanism underlying albuminuria-induced kidney injury remains poorly defined. In our genetic model of nephrotic syndrome (NS), we have identified CHOP (C/EBP homologous protein)-TXNIP (thioredoxin-interacting protein) as critical molecular linkers between albuminuria-induced ER dysfunction and mitochondria dyshomeostasis. TXNIP is a ubiquitously expressed redox protein that binds to and inhibits antioxidant enzyme, cytosolic thioredoxin 1 (Trx1), and mitochondrial Trx2. However, very little is known about the regulation and function of TXNIP in NS. By utilizing Chop-/- and Txnip-/- mice as well as 68Ga-Galuminox, our molecular imaging probe for detection of mitochondrial reactive oxygen species (ROS) in vivo, we demonstrate that CHOP up-regulation induced by albuminuria drives TXNIP shuttling from nucleus to mitochondria, where it is required for the induction of mitochondrial ROS. The increased ROS accumulation in mitochondria oxidizes Trx2, thus liberating TXNIP to associate with mitochondrial nod-like receptor protein 3 (NLRP3) to activate inflammasome, as well as releasing mitochondrial apoptosis signal-regulating kinase 1 (ASK1) to induce mitochondria-dependent apoptosis. Importantly, inhibition of TXNIP translocation and mitochondrial ROS overproduction by CHOP deletion suppresses NLRP3 inflammasome activation and p-ASK1-dependent mitochondria apoptosis in NS. Thus, targeting TXNIP represents a promising therapeutic strategy for the treatment of NS.


Asunto(s)
Albuminuria , Proteínas Portadoras , Riñón , Mitocondrias , Síndrome Nefrótico , Tiorredoxinas , Factor de Transcripción CHOP , Albuminuria/complicaciones , Albuminuria/genética , Albuminuria/prevención & control , Animales , Apoptosis , Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Eliminación de Gen , Inflamasomas/metabolismo , Riñón/metabolismo , Riñón/patología , MAP Quinasa Quinasa Quinasa 5/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Síndrome Nefrótico/complicaciones , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología , Síndrome Nefrótico/prevención & control , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxinas/metabolismo , Factor de Transcripción CHOP/deficiencia , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
2.
Am J Pathol ; 191(2): 256-265, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33245915

RESUMEN

Calcium (Ca2+) homeostasis is a crucial determinant of cellular function and survival. Endoplasmic reticulum (ER) acts as the largest intracellular Ca2+ store that maintains Ca2+ homeostasis through the ER Ca2+ uptake pump, sarco/ER Ca2+ ATPase, ER Ca2+ release channels, inositol 1,4,5-trisphosphate receptor channel, ryanodine receptor, and Ca2+-binding proteins inside of the ER lumen. Alterations in ER homeostasis trigger ER Ca2+ depletion and ER stress, which have been associated with the development of a variety of diseases. In addition, recent studies have highlighted the role of ER Ca2+ imbalance caused by dysfunction of sarco/ER Ca2+ ATPase, ryanodine receptor, and inositol 1,4,5-trisphosphate receptor channel in various kidney diseases. Despite progress in the understanding of the importance of these ER Ca2+ channels, pumps, and binding proteins in the pathogenesis of kidney disease, treatment is still lacking. This mini-review is focused on: i) Ca2+ homeostasis in the ER, ii) ER Ca2+ dyshomeostasis and apoptosis, and iii) altered ER Ca2+ homeostasis in kidney disease, including podocytopathy, diabetic nephropathy, albuminuria, autosomal dominant polycystic kidney disease, and ischemia/reperfusion-induced acute kidney injury.


Asunto(s)
Calcio/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Homeostasis/fisiología , Enfermedades Renales/metabolismo , Animales , Humanos
3.
Proc Natl Acad Sci U S A ; 116(28): 14154-14163, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235574

RESUMEN

Emerging evidence has established primary nephrotic syndrome (NS), including focal segmental glomerulosclerosis (FSGS), as a primary podocytopathy. Despite the underlying importance of podocyte endoplasmic reticulum (ER) stress in the pathogenesis of NS, no treatment currently targets the podocyte ER. In our monogenic podocyte ER stress-induced NS/FSGS mouse model, the podocyte type 2 ryanodine receptor (RyR2)/calcium release channel on the ER was phosphorylated, resulting in ER calcium leak and cytosolic calcium elevation. The altered intracellular calcium homeostasis led to activation of calcium-dependent cytosolic protease calpain 2 and cleavage of its important downstream substrates, including the apoptotic molecule procaspase 12 and podocyte cytoskeletal protein talin 1. Importantly, a chemical compound, K201, can block RyR2-Ser2808 phosphorylation-mediated ER calcium depletion and podocyte injury in ER-stressed podocytes, as well as inhibit albuminuria in our NS model. In addition, we discovered that mesencephalic astrocyte-derived neurotrophic factor (MANF) can revert defective RyR2-induced ER calcium leak, a bioactivity for this ER stress-responsive protein. Thus, podocyte RyR2 remodeling contributes to ER stress-induced podocyte injury. K201 and MANF could be promising therapies for the treatment of podocyte ER stress-induced NS/FSGS.


Asunto(s)
Calcio/metabolismo , Síndrome Nefrótico/genética , Factores de Crecimiento Nervioso/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Albuminuria/tratamiento farmacológico , Albuminuria/genética , Albuminuria/patología , Animales , Señalización del Calcio/genética , Calpaína/genética , Modelos Animales de Enfermedad , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Estrés del Retículo Endoplásmico/genética , Glomeruloesclerosis Focal y Segmentaria/tratamiento farmacológico , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Ratones , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/patología , Podocitos/metabolismo , Podocitos/patología , Talina/genética , Tiazepinas/farmacología
4.
J Korean Med Sci ; 36(1): e10, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33398944

RESUMEN

The cause of epithelioid granulomatous inflammation varies widely depending on the affected organ, geographic region, and whether the granulomas morphologically contain necrosis. Compared with other organs, the etiological distribution and morphological patterns of pleural epithelioid granulomas have rarely been investigated. We evaluated the final etiologies and morphological patterns of pleural epithelioid granulomatous inflammation in a tuberculosis (TB)-prevalent country. Of 83 patients with pleural granulomas, 50 (60.2%) had confirmed TB pleurisy (TB-P) and 29 (34.9%) had probable TB-P. Four patients (4.8%) with non-TB-P were diagnosed. With the exception of microbiological results, there was no significant difference in clinical characteristics and granuloma patterns between the confirmed TB-P and non-TB-P groups, or between patients with confirmed and probable TB-Ps. These findings suggest that most pleural granulomatous inflammation (95.2%) was attributable to TB-P in TB-endemic areas and that the granuloma patterns contributed little to the prediction of final diagnosis compared with other organs.


Asunto(s)
Granuloma/patología , Pleuresia/diagnóstico , Tuberculosis/diagnóstico , Adenosina Desaminasa/metabolismo , Adulto , Algoritmos , ADN Bacteriano/metabolismo , Femenino , Granuloma/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Pleura/metabolismo , Pleuresia/complicaciones , Tuberculosis/complicaciones , Tuberculosis/microbiología
5.
Pediatr Nephrol ; 34(9): 1493-1500, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30099615

RESUMEN

The advent of next-generation sequencing (NGS) in recent years has led to a rapid discovery of novel or rare genetic variants in human kidney cell genes, which is transforming the risk assessment, diagnosis, and treatment of kidney disease. Mutations may lead to protein misfolding, disruption of protein trafficking, and endoplasmic reticulum (ER) retention. An imbalance between the load of misfolded proteins and the folding capacity of the ER causes ER stress and unfolded protein response. Mutations in nephrin (NPHS1), podocin (NPHS2), laminin ß2 (LAMB2), and α-actinin-4 (ACTN4) have been shown to induce ER stress in HEK293 cells and podocytes in hereditary nephrotic syndromes; various founder mutations in collagen IV α chains (COL4A) have been demonstrated to activate podocyte ER stress in collagen IV nephropathies; and mutations in uromodulin (UMOD) have been reported to trigger tubular ER stress in autosomal dominant tubulointerstitial kidney disease. Meanwhile, ER resident protein SEC63 may modify disease severity in autosomal dominant polycystic kidney disease. These findings underscore the importance of ER stress in the pathogenesis of monogenic kidney disease. Recently, we have identified mesencephalic astrocyte-derived neurotrophic factor (MANF) and cysteine-rich with EGF-like domains 2 (CRELD2) as urinary ER stress biomarkers in ER stress-mediated kidney diseases.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Enfermedades Renales/tratamiento farmacológico , Nefrología/métodos , Medicina de Precisión/métodos , Biomarcadores/análisis , Análisis Mutacional de ADN , Estrés del Retículo Endoplásmico/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedades Renales/diagnóstico , Enfermedades Renales/genética , Enfermedades Renales/patología , Mutación , Podocitos/efectos de los fármacos , Podocitos/patología
6.
Biochem J ; 473(17): 2603-10, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27334111

RESUMEN

XBP1 (X-box-binding protein 1) is activated in cancer and has a pivotal role in tumorigenesis and progression of human cancer. In particular, the XBP1 transcriptional regulatory network is well known to drive cancer development, but little is known about whether the stability of XBP1 is regulated and, if so, what controls the stability of XBP1. In the present study we show that PIN1 prolyl isomerase interacts with the active form of XBP1 (XBP1s) in a phosphorylation-dependent manner and promotes XBP1s-induced cell proliferation and transformation through the regulation of XBP1 stability. By contrast, depletion of Pin1 in cancer cells reduced XBP1s expression, which subsequently inhibits cell proliferation and transformation. Interestingly, XBP1s activates multiple oncogenic pathways including NF-κB (nuclear factor κB), AP1 (activator protein 1) and Myc, and down-regulates PIN1 transcription via a negative-feedback mechanism through p53 induction. Ultimately, reciprocal regulation of Pin1 and XBP1s is associated with the activation of oncogenic pathways, and the relationship of PIN1 and XBP1 may be an attractive target for novel therapy in cancers.


Asunto(s)
Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Proteína 1 de Unión a la X-Box/metabolismo , Línea Celular Tumoral , Células HEK293 , Humanos , Neoplasias/patología , Fosforilación
7.
J Neurochem ; 127(2): 221-32, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23815397

RESUMEN

Over-activation of microglia cells in the brain contributes to neurodegenerative processes promoted by the production of various neurotoxic factors including pro-inflammatory cytokines and nitric oxide. Recently, accumulating evidence has suggested that mitochondrial dynamics are an important constituent of cellular quality control and function. However, the role of mitochondrial dynamics in microglial activation is still largely unknown. In this study, we determined whether mitochondrial dynamics are associated with the production of pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated immortalization of murine microglial cells (BV-2) by a v-raf/v-myc carrying retrovirus (J2). Excessive mitochondrial fission was observed in lentivirus-transfected BV-2 cells stably expressing DsRed2-mito following LPS stimulation. Furthermore, mitochondrial localization of dynamin-related protein 1 (Drp1) (a key regulator of mitochondrial fission) was increased and accompanied by de-phosphorylation of Ser637 in Drp1. Interestingly, inhibition of LPS-induced mitochondrial fission and reactive oxygen species (ROS) generation by Mdivi-1 and Drp1 knock-down attenuated the production of pro-inflammatory mediators via reduced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling. Our results demonstrated for the first time that mitochondrial fission regulates mitochondrial ROS production in activated microglial cells and influences the expression of pro-inflammatory mediators through the activation of NF-κB and MAPK. We therefore suggest that mitochondrial dynamics may be essential for understanding pro-inflammatory mediator expression in activated microglial cells. This could represent a new therapeutic approach for preventing neurodegenerative diseases.


Asunto(s)
Mediadores de Inflamación/metabolismo , Microglía/metabolismo , Mitocondrias/fisiología , Animales , Western Blotting , Línea Celular , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Vectores Genéticos , Lentivirus/genética , Lipopolisacáridos/farmacología , Ratones , Microglía/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Biochem Biophys Res Commun ; 434(4): 861-6, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23611781

RESUMEN

The testes of most mammals are sensitive to temperature. To survive and adapt under conditions that promote endoplasmic reticulum (ER) stress such as heat shock, cells have a self-protective mechanism against ER stress that has been termed the "Unfolded Protein Response" (UPR). However, the cellular and molecular events underlying spermatogenesis with testicular hyperthermia involved in the UPR signaling pathway under ER stress remain poorly understood. In the present study, we verified that UPR signaling via phospho-eIF2α/ATF4/GADD34, p90ATF6, and phospho-IRE1α/XBP-1 is activated with testicular hyperthermia (43 °C, 15 min/day) and induced ER stress-mediated apoptosis associated with CHOP, phospho-JNK, and caspase-3 after repetitive periods of hyperthermia. Levels of phospho-eIF2α protein of mouse spermatocytes in the testis were rapidly increased by one cycle of testicular hyperthermia. ATF4/GADD34 and p90ATF6 expression gradually increased and decreased, respectively, with repetitive cycles of hyperthermia. Spliced XBP1 mRNA as a marker of IRE1 activity was increased after one, three cycles of hyperthermia and decreased by five cycles of hyperthermia. Although the levels of anti-apoptotic phospho-JNK (p54) were gradually decreased after three cycles of hyperthermia, CHOP expression was rapidly increased. After five cycles of testicular hyperthermia, the levels of cleaved caspase-3 and TUNEL-positive apoptotic spermatocytes cells were significantly increased. Our data demonstrated that testicular hyperthermia induces UPR signaling and repetitive cycles of hyperthermia lead to apoptosis of spermatocytes in mouse testis. These results suggest a link between the UPR signaling pathway and testicular hyperthermia.


Asunto(s)
Calor , Transducción de Señal/fisiología , Espermatocitos/metabolismo , Testículo/metabolismo , Respuesta de Proteína Desplegada/fisiología , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 6/metabolismo , Empalme Alternativo , Animales , Apoptosis/genética , Apoptosis/fisiología , Western Blotting , Caspasa 3/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/fisiología , Endorribonucleasas/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Inmunohistoquímica , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Fosfatasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción del Factor Regulador X , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Factor de Transcripción CHOP/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/genética , Proteína 1 de Unión a la X-Box
9.
Biochem Biophys Res Commun ; 441(2): 344-50, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24161737

RESUMEN

The corpus luteum (CL) is a transient endocrine organ. Development, maintenance, and regression of CL are effectively controlled by dynamic changes in gene expression. However, it is unknown what types of gene are affected during the CL life span of the estrous cycle in bovine. Here, we determined whether unfolded protein response (UPR) signaling via eIF2α/ATF4/GADD34, p90ATF6/p50ATF6, and IRE1/XBP1, which is a cellular stress response associated with the endoplasmic reticulum (ER), is involved in the bovine CL life span. Our results indicated that expression of Grp78/Bip, the master UPR regulator, was increased during the maintenance stage and rapidly decreased at the regression stage. Additionally, UPR signaling pathways genes were found to be involved in luteal phase progression during the estrous cycle. Our findings suggested that Grp78/Bip, ATF6, and XBP1 act as ER chaperones for initiating CL development and maintaining the CL. In addition, we investigated whether ER stress-mediated apoptosis is occurred through three UPR signaling pathways in CL regression stage. Interestingly, pIRE1 and CHOP were found to be involved in both the adaptive response and ER stress-mediated apoptosis. During the CL regression stage, increased expression of pJNK and CHOP, two components of ER stress-mediated apoptotic cascades, occurred before increased level of cleaved caspase 3 were observed. The present investigation was performed to identify a functional link between UPR signaling and CL life span during the bovine estrous cycle. Taken together, results from this study demonstrated that UPR protein/gene expression levels were different at various stages of the bovine CL life span. Variations in the expression of these protein/genes may play important roles in luteal stage progression during the estrous cycle.


Asunto(s)
Cuerpo Lúteo/crecimiento & desarrollo , Ciclo Estral/metabolismo , Luteólisis/metabolismo , Desplegamiento Proteico , Respuesta de Proteína Desplegada , 3-Hidroxiesteroide Deshidrogenasas/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Bovinos , Cuerpo Lúteo/metabolismo , Cuerpo Lúteo/fisiología , Proteínas de Unión al ADN/metabolismo , Chaperón BiP del Retículo Endoplásmico , Degradación Asociada con el Retículo Endoplásmico , Ciclo Estral/genética , Femenino , Regulación Enzimológica de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Luteólisis/genética , Factores de Transcripción del Factor Regulador X , Transducción de Señal , Factores de Transcripción/metabolismo
10.
Exp Mol Med ; 55(7): 1348-1356, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37394581

RESUMEN

Thioredoxin-interacting protein (TXNIP), which is also known as thioredoxin-binding protein 2 (TBP2), directly interacts with the major antioxidant protein thioredoxin (TRX) and inhibits its antioxidant function and expression. However, recent studies have demonstrated that TXNIP is a multifunctional protein with functions beyond increasing intracellular oxidative stress. TXNIP activates endoplasmic reticulum (ER) stress-mediated nucleotide-binding oligomerization domain (NOD)-like receptor protein-3 (NLRP3) inflammasome complex formation, triggers mitochondrial stress-induced apoptosis, and stimulates inflammatory cell death (pyroptosis). These newly discovered functions of TXNIP highlight its role in disease development, especially in response to several cellular stress factors. In this review, we provide an overview of the multiple functions of TXNIP in pathological conditions and summarize its involvement in various diseases, such as diabetes, chronic kidney disease, and neurodegenerative diseases. We also discuss the potential of TXNIP as a therapeutic target and TXNIP inhibitors as novel therapeutic drugs for treating these diseases.


Asunto(s)
Antioxidantes , Proteína con Dominio Pirina 3 de la Familia NLR , Antioxidantes/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Estrés Oxidativo , Tiorredoxinas/genética , Inflamasomas/metabolismo
11.
bioRxiv ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36711449

RESUMEN

Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD- UMOD ), one of the leading hereditary kidney diseases, and Alzheimer’s disease etc. There are no targeted therapies. ADTKD is also a genetic form of renal fibrosis and chronic kidney disease, which affects 500 million people worldwide. For the first time, in our newly generated mouse model recapitulating human ADTKD- UMOD carrying a leading UMOD deletion mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are severely impaired, leading to cGAS- STING activation and tubular injury. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a novel endoplasmic reticulum stress-regulated secreted protein. We provide the first study that inducible tubular overexpression of MANF after the onset of disease stimulates autophagy/mitophagy and clearance of the misfolded UMOD, and promotes mitochondrial biogenesis through p-AMPK enhancement, resulting in protection of kidney function. Conversely, genetic ablation of endogenous MANF upregulated in the mutant mouse and human tubular cells worsens autophagy suppression and kidney fibrosis. Together, we discover MANF as a novel biotherapeutic protein and elucidate previously unknown mechanisms of MANF in regulating organelle homeostasis to treat ADTKD, which may have broad therapeutic application to treat various proteinopathies.

12.
Nat Commun ; 14(1): 6493, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838725

RESUMEN

Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD-UMOD), a leading hereditary kidney disease. There are no targeted therapies. In our generated mouse model recapitulating human ADTKD-UMOD carrying a leading UMOD mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are impaired, leading to cGAS-STING activation and tubular injury. Moreover, we demonstrate that inducible tubular overexpression of mesencephalic astrocyte-derived neurotrophic factor (MANF), a secreted endoplasmic reticulum protein, after the onset of disease stimulates autophagy/mitophagy, clears mutant UMOD, and promotes mitochondrial biogenesis through p-AMPK enhancement, thus protecting kidney function in our ADTKD mouse model. Conversely, genetic ablation of MANF in the mutant thick ascending limb tubular cells worsens autophagy suppression and kidney fibrosis. Together, we have discovered MANF as a biotherapeutic protein and elucidated previously unknown mechanisms of MANF in the regulation of organelle homeostasis, which may have broad therapeutic applications to treat various proteinopathies.


Asunto(s)
Enfermedades Renales Poliquísticas , Humanos , Ratones , Animales , Autofagia/genética , Homeostasis , Fibrosis , Factores de Crecimiento Nervioso/genética
13.
Respirol Case Rep ; 9(6): e00762, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33976891

RESUMEN

Lipoid pneumonia can develop from exposure to different types of oil, but occupational exposure is rare. A 58-year-old woman was referred to our hospital for patchy airspace opacities in the lungs with lower lobe predominance on chest computed tomography. She was diagnosed with non-Hodgkin's lymphoma seven years ago, but was in complete remission. She had mild cough and sputum, but no history of taking any lipid-containing agents. The bronchoalveolar lavage fluid revealed lipid-laden macrophages with Oil Red O staining, which led to the suspicion of lipoid pneumonia. Re-evaluation of her personal history revealed that she was a dry-cleaning worker who worked with organic solvent sprayers. Her condition was successfully managed with corticosteroids and avoidance of further occupational exposure to the substance. This rare case of occupational exogenous lipoid pneumonia in a dry-cleaning worker suggests the importance of considering a patient's occupational history during diagnosis.

14.
Clin Respir J ; 15(7): 826-834, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33826807

RESUMEN

INTRODUCTION: Few studies have investigated the influence of emphysema on clinical features of patients presenting with community-acquired pneumonia (CAP). OBJECTIVES: The aim of this study was to examine the clinical and microbiological features of patients with both CAP and emphysema. METHODS: This retrospective study included patients with CAP who underwent computed tomography (CT) scan at the time of presentation. Patients were allocated into emphysema and control groups, and clinical variables were compared between the two groups. The emphysema group was further divided into three subgroups (mild, moderate, and severe) according to the extent of emphysema on CT scan. The clinical variables of each subgroup were compared with the control group. RESULTS: Of 1676 patients, 431 patients (25.7%) were classified into the emphysema group. CAP patients with emphysema were more likely to have a high CURB-65 score and pneumonia severity index and a lower incidence of complicated parapneumonic effusion or empyema. The emphysema group exhibited longer hospital stay. In addition, 30-day mortality in the severe emphysema group was significantly higher compared with the control group. As etiological agents, Streptococcus pneumoniae, Pseudomonas aeruginosa, Enterobacteriaceae, and multidrug-resistant pathogens were significantly more common in the emphysema group compared with the control group. CONCLUSIONS: The presence of emphysema in CAP patients was associated with a more severe form of CAP, a longer hospital stay, and a lower incidence of complicated parapneumonic effusion or empyema. Moreover, CAP patients with severe emphysema exhibited higher 30-day mortality than those without emphysema.


Asunto(s)
Infecciones Comunitarias Adquiridas , Enfisema , Neumonía , Infecciones Comunitarias Adquiridas/epidemiología , Humanos , Neumonía/epidemiología , Pronóstico , Estudios Retrospectivos
15.
Thorac Cancer ; 12(2): 235-244, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33231358

RESUMEN

BACKGROUND: We investigated the clinical features and surgical outcomes of lung adenocarcinoma with minimal solid or micropapillary (S/MP) components, with a focus on stage IA. METHODS: We enrolled 506 patients with lung adenocarcinoma who underwent curative resection in this study. Clinical features and surgical outcomes were compared between the groups with and without the S/MP subtype (S/MP+ and S/MP-, respectively), and between the group with an S/MP proportion of ≤5% (S/MP5) and the S/MP-. RESULTS: The S/MP subtype was present in 247 patients (48.8%); 129 (25.5%) were grouped as the S/MP5 group. The S/MP+ and S/MP5 groups had larger tumors, higher frequency of lymph node metastasis, and more advanced stages of disease than the S/MP- group (P < 0.001, all comparisons). Pleural, lymphatic, and vascular invasions occurred more frequently in the S/MP+ and S/MP5 groups (P < 0.001, all comparisons for S/MP+ vs. S/MP-; P ≤ 0.01, all comparisons for S/MP5 vs. S/MP-). The S/MP+ and S/MP5 groups showed a shorter time to recurrence and cancer-related death than the S/MP- group(P < 0.001, both comparisons). For stage I, the presence or absence of the S/MP subtype defined prognostic subgroups better than the stage IA/IB classification. Notably, in the multivariate analysis, the minimal S/MP component was a significant predictor of recurrence, even in stage IA. CONCLUSIONS: The presence of the minimal S/MP component was a significant predictor of poor prognosis after surgery, even in stage IA patients. Clinical trials to evaluate the advantages of adjuvant chemotherapy for this subset of patients and further investigations to understand underlying biological mechanisms of poor prognosis are needed. KEY POINTS: Significant findings of the study: We demonstrated that only minimal presence of solid or micropapillary component was profoundly associated with aggressive clinicopathological features and poor prognosis after complete resection even in stage IA lung adenocarcinoma. WHAT THIS STUDY ADDS: Our results suggest that minimal presence of these subtypes is a strong prognostic factor which should be taken into account in the risk assessment for adjuvant chemotherapy in lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón/fisiopatología , Neoplasias Pulmonares/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico
16.
J Cancer ; 11(18): 5503-5510, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32742497

RESUMEN

Background: Accumulating evidence suggests that necroptosis, or programmed necrotic cell death, may play a significant role in cancer. We evaluated the expression of key molecules in necroptosis and their association with clinical features and prognosis in NSCLC. Methods: A total of 253 NSCLC patients (96 squamous cell carcinoma [SCC] cases and 157 adenocarcinoma [AC] cases) who underwent curative resection were included. Tumor tissues and corresponding normal tissues were investigated for relative mRNA expression levels of RIPK1, RIPK3, and MLKL. Difference in disease free survival (DFS) was analyzed according to the expression levels of these molecules in tumor tissues. Results: NSCLC tissues had significantly lower expression of RIPK1, RIPK3, and MLKL than normal tissues (P = 1 x 10-4, P = 8 x 10-6, and P = 4 x 10-8, respectively). In subgroup analysis, SCCs had significantly lower RIPK1, RIPK3, and MLKL expression (P = 5 x 10-4, P = 3 x 10-15, P = 1 x 10-5, respectively), and ACs had significantly lower RIPK1 and MLKL expression (P = 0.01 and P = 6 x 10-4, respectively) than normal tissues. Low expression of RIPK1, RIPK3, and MLKL in tumors was associated with a worse DFS (HR = 1.71, P = 0.01; HR = 1.53, P = 0.04; and HR = 1.53, P = 0.04, respectively) in a multivariate analysis. In SCC, none of the RIPK1, RIPK3, and MLKL expression was significantly associated with DFS. However, in AC, low expression of RIPK1, RIPK3, and MLKL was significantly associated with worse DFS (HR = 1.67, P = 0.03; HR = 1.70, P = 0.03; and HR = 1.81, P = 0.02, respectively). Conclusions: Key regulatory genes in necroptosis, RIPK1, RIPK3, and MLKL, were downregulated in NSCLC, and their lower expression in NSCLC may be used to predict early recurrence after curative resection, especially in AC.

17.
Free Radic Biol Med ; 123: 96-106, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29778464

RESUMEN

Reactive oxygen species (ROS) produced in biological reactions have been shown to contribute to ovarian aging. Peroxiredoxin 2 (Prx2) is an antioxidant enzyme that protects cells by scavenging ROS; however, its effect on age-related, oxidative stress-associated ovarian failure has not been reported. Here, we investigated its role in age-related ovarian dysfunction and 4-vinylcyclohexene diepoxide (VCD)-induced premature ovarian failure using Prx2-deficient mice. Compared to those in wildtype (WT) mice, serum levels of anti-Müllerian hormone, 17ß-estradiol, and progesterone and numbers of follicles and corpora lutea were significantly lower in 18-month-old Prx2-/- mice. Moreover, levels of Bax, cytochrome c, cleaved caspase-3, and phosphorylated JNK proteins were higher and numbers of apoptotic (terminal deoxynucleotidyl transferase dUTP nick end labeling-positive) cells were considerably greater in 18-month-old Prx2-/- ovaries than WT ovaries. Furthermore, the effects of the ovarian toxicant VCD in significantly enhancing ROS levels and apoptosis through activation of JNK-mediated apoptotic signaling were more pronounced in Prx2-/- than WT mouse embryonic fibroblasts. Expression of the steroidogenic proteins StAR, CYP11A1, and 3ß-HSD and serum levels of 17ß-estradiol and progesterone were also reduced to a greater extent in Prx2-/- mice than WT mice after VCD injection. This reduced steroidogenesis was rescued by addition of the Prx mimic ebselen or JNK inhibitor SP600125. This constitutes the first report that Prx2 deficiency leads to acceleration of age-related or VCD-induced ovarian failure by activation of the ROS-induced JNK pathway. These findings suggest that Prx2 plays an important role in preventing accelerated ovarian failure by inhibiting ROS-induced JNK activation.


Asunto(s)
Envejecimiento , Sistema de Señalización de MAP Quinasas , Enfermedades del Ovario/patología , Folículo Ovárico/patología , Estrés Oxidativo , Peroxirredoxinas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis , Carcinógenos/toxicidad , Cuerpo Lúteo/efectos de los fármacos , Cuerpo Lúteo/metabolismo , Cuerpo Lúteo/patología , Ciclohexenos/toxicidad , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades del Ovario/inducido químicamente , Enfermedades del Ovario/metabolismo , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Transducción de Señal , Compuestos de Vinilo/toxicidad
18.
Free Radic Biol Med ; 123: 27-38, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29777756

RESUMEN

Elevated levels of reactive oxygen species (ROS) are a hallmark of obesity. Peroxiredoxin 5 (Prx5), which is a cysteine-dependent peroxidase enzyme, has an intensive ROS scavenging activity because it is located in the cytosol and mitochondria. Therefore, we focused on the role of Prx5 in regulating mitochondrial ROS and adipogenesis. We demonstrated that Prx5 expression was upregulated during adipogenesis and Prx5 overexpression suppressed adipogenesis by regulating cytosolic and mitochondrial ROS generation. Silencing Prx5 promoted preadipocytes to differentiate into adipocytes accumulating lipids by activating adipogenic protein expression. Prx5-deletion mice fed on a high-fat diet (HFD) exhibited significant increase in body weight, enormous fat pads, and adipocyte hypertrophy in comparison to wild type mice. Prx5 deletion also remarkably induced adipogenesis-related gene expression in white adipose tissue. These phenotypic changes in Prx5-deletion mice were accompanied with lipid metabolic disorders, such as excessive lipid accumulation in the liver, severe hepatic steatosis, and high levels of triglyceride in the serum. These results demonstrated that Prx5 deletion increased the susceptibility to HFD-induced obesity and several of its associated metabolic disorders. In conclusion, we suggest that Prx5 inhibits adipogenesis by modulating ROS generation and adipogenic gene expression, implying that Prx5 may serve as a potential strategy to prevent and treat obesity.


Asunto(s)
Adipogénesis , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Obesidad/etiología , Estrés Oxidativo , Peroxirredoxinas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Diferenciación Celular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/metabolismo , Obesidad/patología
19.
Int J Biochem Cell Biol ; 99: 80-90, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29605633

RESUMEN

Insulin signaling is essential for regulating glucose homeostasis. Numerous studies have demonstrated that reactive oxygen species (ROS) affect insulin signaling, and low ROS levels can act as a signal to regulate cellular function. Peroxiredoxins (Prxs) are highly abundant and widely expressed antioxidant enzymes. However, it is unclear whether antioxidant enzymes, such as Prx2, mediate insulin signaling. The aim of our study was to investigate the influence of Prx2 deficiency on insulin signaling. Our western blot results showed that Prx2 deficiency enhanced insulin signaling and increased oxidation of protein tyrosine phosphatase 1B (PTP1B) and phosphatase and tensin homologue (PTEN) in mouse embryonic fibroblasts (MEFs) treated with insulin. In addition, we assessed ROS levels with a Cytosol-HyPer H2O2 sensor. As a result, increased ROS levels and Akt activation were decreased by N-acetyl-cysteine (Nac), which acted as an antioxidant in Prx2-deficient MEFs. Body weight measurements and glucose tolerance test (GTT) revealed significant body weight reduction and increase in glucose clearance in Prx2-/- mice fed a high-fat diet. Interestingly, glucose transporter type 4 (GLUT4) was significantly higher in Prx2-/- mice than in wild-type mice according to western blotting results. Western blotting also revealed that Akt phosphorylation was higher in Prx2-/- MEFs and muscle tissue than in wild-type. Together, our findings indicate that increased ROS due to Prx2 deficiency promotes insulin sensitivity and glucose clearance in skeletal muscles by increasing protein tyrosine phosphatase (PTPs) oxidation. These results provide novel insights into the fundamental mechanisms of insulin signaling induced by Prx2 deficiency and suggest that ROS-based therapeutic strategies can be used to suppress insulin resistance.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/fisiología , Resistencia a la Insulina , Insulina/farmacología , Músculo Esquelético/efectos de los fármacos , Proteínas Tirosina Fosfatasas/química , Especies Reactivas de Oxígeno/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Hipoglucemiantes/farmacología , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Oxidación-Reducción , Fosforilación , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal
20.
Transl Res ; 188: 1-9, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28719799

RESUMEN

Mesencephalic astrocyte-derived neurotrophic factor (MANF), a newly identified 18-kDa soluble protein, localizes to the luminal endoplasmic reticulum (ER), whose stress can stimulate MANF expression and secretion. In Drosophila and zebrafish, MANF regulates dopaminergic neuron development. In contrast, in mice, MANF deficiency leads to diabetes and activation of the unfolded protein response. Recent studies in rodent models have demonstrated that MANF mitigates diabetes, exerts neurotrophic function in neurodegenerative disease, protects cardiomyocytes and neurons in myocardial infarction and cerebral ischemia, respectively, and promotes immune cell phenotype switch from proinflammatory macrophages to prorepair anti-inflammatory macrophages. The cytoprotective mechanisms of MANF on ER stress are currently under active investigation. In addition, for the first time, we have discovered that MANF can potentially serve as a urinary ER stress biomarker in ER stress-mediated kidney disease. These studies have underscored the diagnostic and therapeutic importance of MANF in ER diseases.


Asunto(s)
Retículo Endoplásmico/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Animales , Biomarcadores , Humanos , Factores de Crecimiento Nervioso/genética , Conformación Proteica , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA