Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Eur J Med Chem ; 265: 116052, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38134745

RESUMEN

The bromodomain and extraterminal domain (BET) family proteins recognize acetyl-lysine (Kac) at the histone tail through two tandem bromodomains, i.e., BD1 and BD2, to regulate gene expression. BET proteins are attractive therapeutic targets in cancer due to their involvement in oncogenic transcriptional activation, and bromodomains have defined Kac-binding pockets. Here, we present DW-71177, a potent BET inhibitor that selectively interacts with BD1 and exhibits strong antileukemic activity. X-ray crystallography, isothermal titration calorimetry, and molecular dynamic studies have revealed the robust and specific binding of DW-71177 to the Kac-binding pocket of BD1. DW-71177 effectively inhibits oncogenes comparable to the pan-BET inhibitor OTX-015, but with a milder impact on housekeeping genes. It efficiently blocks cancer-associated transcriptional changes by targeting genes that are highly enriched with BRD4 and histone acetylation marks, suggesting that BD1-selective targeting could be an effective and safe therapeutic strategy against leukemia.


Asunto(s)
Leucemia Mieloide Aguda , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Histonas , Proteínas Nucleares , Quinoxalinas/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteínas de Ciclo Celular/metabolismo , Proteínas que Contienen Bromodominio
2.
Cancer Lett ; 349(1): 45-50, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-24704155

RESUMEN

Functional versatility and elevated expression in cancers have endowed p21-activated kinase 4 (PAK4) as one of the first-in-class anti-cancer drug target. In this study, a novel PAK4 inhibitor, KY-04031 (N(2)-(2-(1H-indol-3-yl)ethyl)-N(4)-(1H-indazol-5-yl)-6-methoxy-1,3,5-triazine-2,4-diamine), was discovered using a high-throughput screening. Analysis of the complex crystal structure illustrated that both indole and indazole of KY-04031 are responsible for PAK4 hinge interaction. Moreover, the molecule's triazine core was found to mimic the ribose of the natural ATP substrate. The cell-based anti-cancer potency of KY-04031 was less effective than the pyrroloaminopyrazoles; however, the unique molecular feature of KY-04031 can be exploited in designing new PAK4 inhibitors.


Asunto(s)
Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Quinasas p21 Activadas/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos
3.
Comb Chem High Throughput Screen ; 16(1): 37-46, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22934984

RESUMEN

Recent advances in basic and clinical studies have identified Rho kinase (ROCK) as an important target potentially implicated in a variety of cardiovascular diseases and ROCK inhibitors were considered as a pharmacological strategy to prevent and treat cardiovascular diseases. To screen the small molecule compound library against ROCK, a high throughput screening (HTS) campaign was carried out using immobilized metal affinity for phosphochemicals (IMAP)-based time-resolved fluorescence resonance energy transfer (TR-FRET) assay. Z' value and signal to background (S/B) ratio were achieved at 0.76 and 5.27 for the pilot library screening of the most diverse set consisting of 15,040 compounds with a reasonable reconfirmation rate. From this screening campaign, four novel scaffolds, such as 3- nitropyridine, 4-methoxy-1,3,5,-triazine, naphthalene-1,4-dione, and 2,3-dihydro-1H-pyrrolo[2,3-b]quinoxaline, were yielded. Particularly, we found that 3-nitropyridine derivatives possess potent inhibitory activity and selectivity for ROCK. Our findings provide important information for the design of novel ROCK inhibitor.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Diseño de Fármacos , Humanos , Modelos Moleculares , Quinasas Asociadas a rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA