Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(28): 13943-13951, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31221747

RESUMEN

Cisplatin [cis-diamminedichloroplatinum(II) (cis-DDP)] is one of the most successful anticancer agents effective against a wide range of solid tumors. However, its use is restricted by side effects and/or by intrinsic or acquired drug resistance. Here, we probed the role of glutathione transferase (GST) P1-1, an antiapoptotic protein often overexpressed in drug-resistant tumors, as a cis-DDP-binding protein. Our results show that cis-DDP is not a substrate for the glutathione (GSH) transferase activity of GST P1-1. Instead, GST P1-1 sequesters and inactivates cisplatin with the aid of 2 solvent-accessible cysteines, resulting in protein subunits cross-linking, while maintaining its GSH-conjugation activity. Furthermore, it is well known that GST P1-1 binding to the c-Jun N-terminal kinase (JNK) inhibits JNK phosphorylation, which is required for downstream apoptosis signaling. Thus, in turn, GST P1-1 overexpression and Pt-induced subunit cross-linking could modulate JNK apoptotic signaling, further confirming the role of GST P1-1 as an antiapoptotic protein.


Asunto(s)
Cisplatino/química , Gutatión-S-Transferasa pi/química , Proteínas Quinasas JNK Activadas por Mitógenos/química , Neoplasias/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glutatión/química , Gutatión-S-Transferasa pi/genética , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Neoplasias/genética , Fosforilación , Unión Proteica/efectos de los fármacos , Conformación Proteica , Transducción de Señal/efectos de los fármacos
2.
J Chem Inf Model ; 57(12): 2996-3010, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29111719

RESUMEN

Significant activity changes due to small structural changes (i.e., activity cliffs) of serine/threonine kinase Pim1 inhibitors were studied theoretically using the fragment molecular orbital method with molecular mechanics Poisson-Boltzmann surface area (FMO+MM-PBSA) approach. This methodology enables quantum-chemical calculations for large biomolecules with solvation. In the course of drug discovery targeting Pim1, six benzofuranone-class inhibitors were found to differ only in the position of the indole-ring nitrogen atom. By comparing the various qualities of complex structures based on X-ray, classical molecular mechanics (MM)-optimized, and quantum/molecular mechanics (QM/MM)-optimized structures, we found that the QM/MM-optimized structures provided the best correlation (R2 = 0.85) between pIC50 and the calculated FMO+MM-PBSA binding energy. Combining the classical solvation energy with the QM binding energy was important to increase the correlation. In addition, decomposition of the interaction energy into various physicochemical components by pair interaction energy decomposition analysis suggested that CH-π and electrostatic interactions mainly caused the activity differences.


Asunto(s)
Benzofuranos/química , Benzofuranos/farmacología , Conformación Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-pim-1/química , Dominio Catalítico/efectos de los fármacos , Cristalografía por Rayos X , Humanos , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Teoría Cuántica , Electricidad Estática , Termodinámica
3.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 392-404, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24531473

RESUMEN

The small kinase inhibitor SKF86002 lacks intrinsic fluorescence but becomes fluorescent upon binding to the ATP-binding sites of p38 mitogen-activated protein kinase (p38α). It was found that co-crystals of this compound with various kinases were distinguishable by their strong fluorescence. The co-crystals of SKF86002 with p38α, Pim1, ASK1, HCK and AMPK were fluorescent. Addition of SKF86002, which binds to the ATP site, to the co-crystallization solution of HCK promoted protein stability and thus facilitated the production of crystals that otherwise would not grow in the apo form. It was further demonstrated that the fluorescence of SKF86002 co-crystals can be applied to screen for candidate kinase inhibitors. When a compound binds competitively to the ATP-binding site of a kinase crystallized with SKF86002, it displaces the fluorescent SKF86002 and the crystal loses its fluorescence. Lower fluorescent signals were reported after soaking SKF86002-Pim1 and SKF86002-HCK co-crystals with the inhibitors quercetin, a quinazoline derivative and A-419259. Determination of the SKF86002-Pim1 and SKF86002-HCK co-crystal structures confirmed that SKF86002 interacts with the ATP-binding sites of Pim1 and HCK. The structures of Pim1-SKF86002 crystals soaked with the inhibitors quercetin and a quinazoline derivative and of HCK-SKF86002 crystals soaked with A-419259 were determined. These structures were virtually identical to the deposited crystal structures of the same complexes. A KINOMEscan assay revealed that SKF86002 binds a wide variety of kinases. Thus, for a broad range of kinases, SKF86002 is useful as a crystal marker, a crystal stabilizer and a marker to identify ligand co-crystals for structural analysis.


Asunto(s)
Adenosina Trifosfato/química , Colorantes Fluorescentes/química , Imidazoles/química , Sondas Moleculares/química , Inhibidores de Proteínas Quinasas/química , Tiazoles/química , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Unión Competitiva , Cristalización , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , MAP Quinasa Quinasa Quinasa 5/antagonistas & inhibidores , MAP Quinasa Quinasa Quinasa 5/química , MAP Quinasa Quinasa Quinasa 5/genética , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 14 Activada por Mitógenos/química , Proteína Quinasa 14 Activada por Mitógenos/genética , Unión Proteica , Proteínas Proto-Oncogénicas c-hck/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-hck/química , Proteínas Proto-Oncogénicas c-hck/genética , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-pim-1/química , Proteínas Proto-Oncogénicas c-pim-1/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-22869110

RESUMEN

The serine/threonine kinase Pim-1 is emerging as a promising target for cancer therapeutics. Much attention has recently been focused on identifying potential Pim-1 inhibitor candidates for the treatment of haematopoietic malignancies. The outcome of a rational drug-design project has recently been reported [Nakano et al. (2012), J. Med. Chem. 55, 5151-5156]. The report described the process of optimization of the structure-activity relationship and detailed from a medicinal chemistry perspective the development of a low-potency and nonselective compound initially identified from in silico screening into a potent, selective and metabolically stable Pim-1 inhibitor. Here, the structures of the initial in silico hits are reported and the noteworthy features of the Pim-1 complex structures are described. A particular focus was placed on the rearrangement of the glycine-rich P-loop region that was observed for one of the initial compounds, (Z)-7-(azepan-1-ylmethyl)-2-[(1H-indol-3-yl)methylidene]-6-hydroxy-1-benzofuran-3(2H)-one (compound 1), and was also found in all further derivatives. This novel P-loop conformation, which appears to be stabilized by an additional interaction with the ß3 strand located above the binding site, is not usually observed in Pim-1 structures.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-pim-1/química , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Estructura Cuaternaria de Proteína , Homología Estructural de Proteína
5.
J Mol Recognit ; 24(2): 220-34, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20540076

RESUMEN

The diuretic drug ethacrynic acid (EA), both an inhibitor and substrate of pi class glutathione S-transferase (GST P1-1), has been tested in clinical trials as an adjuvant in chemotherapy. We recently studied the role of the active site residue Tyr-108 in binding EA to the enzyme and found that the analysis was complicated by covalent binding of this drug to the highly reactive Cys-47. Previous attempts to eliminate this binding by chemical modification yielded ambiguous results and therefore we decided here to produce a double mutant C47S/Y108V by site directed mutagenesis and further expression in Escherichia coli and the interaction of EA and its GSH conjugate (EASG) examined by calorimetric studies and X-ray diffraction. Surprisingly, in the absence of Cys-47, Cys-101 (located at the dimer interface) becomes a target for modification by EA, albeit at a lower conjugation rate than Cys-47. The Cys-47 → Ser mutation in the double mutant enzyme induces a positive cooperativity between the two subunits when ligands with affinity to G-site bind to enzyme. However, this mutation does not seem to affect the thermodynamic properties of ligand binding to the electrophilic binding site (H-site) and the thermal or chemical stability of this double mutant does not significantly affect the unfolding mechanism in either the absence or presence of ligand. Crystal structures of apo and an EASG complex are essentially identical with a few exceptions in the H-site and in the water network at the dimer interface.


Asunto(s)
Cisteína/genética , Diuréticos/metabolismo , Ácido Etacrínico/metabolismo , Gutatión-S-Transferasa pi/química , Gutatión-S-Transferasa pi/metabolismo , Proteínas Mutantes/metabolismo , Mutación/genética , Sustitución de Aminoácidos , Calorimetría , Cristalografía por Rayos X , Activación Enzimática , Glutatión/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Multimerización de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato , Termodinámica
6.
Chemistry ; 17(28): 7806-16, 2011 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-21681839

RESUMEN

Platinum-based cancer drugs, such as cisplatin, are highly effective chemotherapeutic agents used extensively for the treatment of solid tumors. However, their effectiveness is limited by drug resistance, which, in some cancers, has been associated with an overexpression of pi class glutathione S-transferase (GST P1-1), an important enzyme in the mercapturic acid detoxification pathway. Ethacraplatin (EA-CPT), a trans-Pt(IV) carboxylate complex containing ethacrynate ligands, was designed as a platinum cancer metallodrug that could also target cytosolic GST enzymes. We previously reported that EA-CPT was an excellent inhibitor of GST activity in live mammalian cells compared to either cisplatin or ethacrynic acid. In order to understand the nature of the drug-protein interactions between EA-CPT and GST P1-1, and to obtain mechanistic insights at a molecular level, structural and biochemical investigations were carried out, supported by molecular modeling analysis using quantum mechanical/molecular mechanical methods. The results suggest that EA-CPT preferentially docks at the dimer interface at GST P1-1 and subsequent interaction with the enzyme resulted in docking of the ethacrynate ligands at both active sites (in the H-sites), with the Pt moiety remaining bound at the dimer interface. The activation of the inhibitor by its target enzyme and covalent binding accounts for the strong and irreversible inhibition of enzymatic activity by the platinum complex.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/metabolismo , Gutatión-S-Transferasa pi/metabolismo , Platino (Metal)/química , Platino (Metal)/metabolismo , Animales , Antineoplásicos/uso terapéutico , Cisplatino/química , Cisplatino/uso terapéutico , Cristalografía por Rayos X , Dimerización , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Ácido Etacrínico/química , Ácido Etacrínico/metabolismo , Ácido Etacrínico/uso terapéutico , Gutatión-S-Transferasa pi/química , Gutatión-S-Transferasa pi/genética , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Estructura Molecular , Neoplasias/tratamiento farmacológico , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Angew Chem Int Ed Engl ; 48(21): 3854-7, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19396894

RESUMEN

Double trouble: A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor (see picture). The mechanism of inhibition was studied using a range of biophysical and biochemical methods.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Glutatión Transferasa/antagonistas & inhibidores , Glutatión Transferasa/metabolismo , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Cristalografía por Rayos X , Inhibidores Enzimáticos/síntesis química , Glutatión Transferasa/genética , Modelos Moleculares , Estructura Molecular , Mutación/genética , Compuestos Organometálicos/síntesis química
8.
Protein Sci ; 26(2): 317-326, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27863446

RESUMEN

Arsenic-based compounds are paradoxically both poisons and drugs. Glutathione transferase (GSTP1-1) is a major factor in resistance to such drugs. Here we describe using crystallography, X-ray absorption spectroscopy, mutagenesis, mass spectrometry, and kinetic studies how GSTP1-1 recognizes the drug phenylarsine oxide (PAO). In conditions of cellular stress where glutathione (GSH) levels are low, PAO crosslinks C47 to C101 of the opposing monomer, a distance of 19.9 Å, and causes a dramatic widening of the dimer interface by approximately 10 Å. The GSH conjugate of PAO, which forms rapidly in cancerous cells, is a potent inhibitor (Ki = 90 nM) and binds as a di-GSH complex in the active site forming part of a continuous network of interactions from one active site to the other. In summary, GSTP1-1 can detoxify arsenic-based drugs by sequestration at the active site and at the dimer interface, in situations where there is a plentiful supply of GSH, and at the reactive cysteines in conditions of low GSH.


Asunto(s)
Arsénico/química , Arsenicales/química , Reactivos de Enlaces Cruzados/química , Gutatión-S-Transferasa pi/química , Humanos , Multimerización de Proteína , Estructura Cuaternaria de Proteína
9.
Protein Sci ; 15(5): 1093-105, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16597834

RESUMEN

The nitric oxide molecule (NO) is involved in many important physiological processes and seems to be stabilized by reduced thiol species, such as S-nitrosoglutathione (GSNO). GSNO binds strongly to glutathione transferases, a major superfamily of detoxifying enzymes. We have determined the crystal structure of GSNO bound to dimeric human glutathione transferase P1-1 (hGSTP1-1) at 1.4 A resolution. The GSNO ligand binds in the active site with the nitrosyl moiety involved in multiple interactions with the protein. Isothermal titration calorimetry and differential scanning calorimetry (DSC) have been used to characterize the interaction of GSNO with the enzyme. The binding of GSNO to wild-type hGSTP1-1 induces a negative cooperativity with a kinetic process concomitant to the binding process occurring at more physiological temperatures. GSNO inhibits wild-type enzyme competitively at lower temperatures but covalently at higher temperatures, presumably by S-nitrosylation of a sulfhydryl group. The C47S mutation removes the covalent modification potential of the enzyme by GSNO. These results are consistent with a model in which the flexible helix alpha2 of hGST P1-1 must move sufficiently to allow chemical modification of Cys47. In contrast to wild-type enzyme, the C47S mutation induces a positive cooperativity toward GSNO binding. The DSC results show that the thermal stability of the mutant is slightly higher than wild type, consistent with helix alpha2 forming new interactions with the other subunit. All these results suggest that Cys47 plays a key role in intersubunit cooperativity and that under certain pathological conditions S-nitrosylation of Cys47 by GSNO is a likely physiological scenario.


Asunto(s)
Gutatión-S-Transferasa pi/química , Gutatión-S-Transferasa pi/metabolismo , Óxido Nítrico/metabolismo , S-Nitrosoglutatión/química , S-Nitrosoglutatión/metabolismo , Calorimetría , Cristalización , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Estructura Molecular , Mutación , Óxido Nítrico/química , Unión Proteica , Desnaturalización Proteica , Termodinámica , Volumetría
10.
J Med Chem ; 55(11): 5151-64, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22540945

RESUMEN

Serine/threonine kinase PIM1 is an emerging therapeutic target for hematopoietic and prostate cancer therapy. To develop a novel PIM1 inhibitor, we focused on 1, a metabolically labile, nonselective kinase inhibitor discovered in our previous screening study. We adopted a rational optimization strategy based mainly on structural information for the PIM1-1 complex to improve the potency and selectivity. This approach afforded the potent and metabolically stable PIM1-selective inhibitor 14, which shows only a marginal increase in molecular weight compared with 1 but has a significantly decreased cLogP. The validity of our design concept was confirmed by X-ray structure analysis. In a cellular study, 14 potently inhibited the growth of human leukemia cell line MV4-11 but had a negligible effect on the growth of WI-38 (surrogate for general toxicity). These results demonstrate the effectiveness of our design strategy for evolving the screening-hit compound 1 into a novel type of PIM1 inhibitor, 14.


Asunto(s)
Antineoplásicos/síntesis química , Compuestos Aza/síntesis química , Benzofuranos/síntesis química , Indoles/síntesis química , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Compuestos Aza/química , Compuestos Aza/farmacología , Benzofuranos/química , Benzofuranos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Bases de Datos Factuales , Ensayos de Selección de Medicamentos Antitumorales , Fase G1/efectos de los fármacos , Humanos , Indoles/química , Indoles/farmacología , Leucemia , Modelos Moleculares , Estructura Molecular , Estereoisomerismo , Relación Estructura-Actividad
11.
J Inorg Biochem ; 115: 138-47, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22437159

RESUMEN

In this mini-review we focus on metal interactions with proteins with a particular emphasis on the evident synergism between different biophysical approaches toward understanding metallobiology. We highlight three recent examples from our own laboratory. Firstly, we describe metallodrug interactions with glutathione S-transferases, an enzyme family known to attack commonly used anti-cancer drugs. We then describe a protein target for memory enhancing drugs called insulin-regulated aminopeptidase in which zinc plays a role in catalysis and regulation. Finally we describe our studies on a protein, amyloid precursor protein, that appears to play a central role in Alzheimer's disease. Copper ions have been implicated in playing both beneficial and detrimental roles in the disease by binding to different regions of this protein.


Asunto(s)
Aminopeptidasas/química , Precursor de Proteína beta-Amiloide/química , Cobre/química , Glutatión Transferasa/química , Zinc/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Aminopeptidasas/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Cobre/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Relación Estructura-Actividad , Zinc/metabolismo
12.
J Mol Biol ; 417(3): 240-52, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22306408

RESUMEN

A new screening method using fluorescent correlation spectroscopy was developed to select kinase inhibitors that competitively inhibit the binding of a fluorescently labeled substrate peptide. Using the method, among approximately 700 candidate compounds selected by virtual screening, we identified a novel Pim-1 kinase inhibitor targeting its peptide binding residues. X-ray crystal analysis of the complex structure of Pim-1 with the inhibitor indicated that the inhibitor actually binds to the ATP-binding site and also forms direct interactions with residues (Asp128 and Glu171) that bind the substrate peptide. These interactions, which cause small side-chain movements, seem to affect the binding ability of the fluorescently labeled substrate. The compound inhibited Pim-1 kinase in vitro, with an IC(50) value of 150 nM. Treatment of cultured leukemia cells with the compound reduced the amount of p21 and increased the amount of p27, due to Pim-1 inhibition, and then triggered apoptosis after cell-cycle arrest at the G(1)/S phase. This screening method may be widely applicable for the identification of various new Pim-1 kinase inhibitors targeting the residues that bind the substrate peptide.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-pim-1/química , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Sitios de Unión , Unión Competitiva , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/farmacología , Humanos , Cinética , Modelos Moleculares , Estructura Molecular , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Espectrometría de Fluorescencia/métodos
13.
Protein Sci ; 18(12): 2454-70, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19780048

RESUMEN

The effect of the Y108V mutation of human glutathione S-transferase P1-1 (hGST P1-1) on the binding of the diuretic drug ethacrynic acid (EA) and its glutathione conjugate (EASG) was investigated by calorimetric, spectrofluorimetric, and crystallographic studies. The mutation Tyr 108 --> Val resulted in a 3D-structure very similar to the wild type (wt) enzyme, where both the hydrophobic ligand binding site (H-site) and glutathione binding site (G-site) are unchanged except for the mutation itself. However, due to a slight increase in the hydrophobicity of the H-site, as a consequence of the mutation, an increase in the entropy was observed. The Y108V mutation does not affect the affinity of EASG for the enzyme, which has a higher affinity (K(d) approximately 0.5 microM) when compared with those of the parent compounds, K(d) (EA) approximately 13 microM, K(d) (GSH) approximately 25 microM. The EA moiety of the conjugate binds in the H-site of Y108V mutant in a fashion completely different to those observed in the crystal structures of the EA or EASG wt complex structures. We further demonstrate that the Delta C(p) values of binding can also be correlated with the potential stacking interactions between ligand and residues located in the binding sites as predicted from crystal structures. Moreover, the mutation does not significantly affect the global stability of the enzyme. Our results demonstrate that calorimetric measurements maybe useful in determining the preference of binding (the binding mode) for a drug to a specific site of the enzyme, even in the absence of structural information.


Asunto(s)
Gutatión-S-Transferasa pi/química , Gutatión-S-Transferasa pi/genética , Mutación Puntual , Calorimetría , Cristalografía por Rayos X , Diuréticos/farmacología , Ácido Etacrínico/farmacología , Gutatión-S-Transferasa pi/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Estabilidad Proteica , Espectrometría de Fluorescencia , Termodinámica , Volumetría
14.
J Mol Biol ; 380(1): 131-44, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18511072

RESUMEN

The commonly used anti-cancer drug chlorambucil is the primary treatment for patients with chronic lymphocytic leukaemia. Chlorambucil has been shown to be detoxified by human glutathione transferase Pi (GST P1-1), an enzyme that is often found over-expressed in cancer tissues. The allelic variants of GST P1-1 are associated with differing susceptibilities to leukaemia and differ markedly in their efficiency in catalysing glutathione (GSH) conjugation reactions. Here, we perform detailed kinetic studies of the allelic variants with the aid of three representative co-substrates. We show that the differing catalytic properties of the variants are highly substrate-dependent. We show also that all variants exhibit the same temperature stability in the range 10 degrees C to 45 degrees C. We have determined the crystal structures of GST P1-1 in complex with chlorambucil and its GSH conjugate for two of these allelic variants that have different residues at positions 104 and 113. Chlorambucil is found to bind in a non-productive mode to the substrate-binding site (H-site) in the absence of GSH. This result suggests that under certain stress conditions where GSH levels are low, GST P1-1 can inactivate the drug by sequestering it from the surrounding medium. However, in the presence of GSH, chlorambucil binds in the H-site in a productive mode and undergoes a conjugation reaction with GSH present in the crystal. The crystal structure of the GSH-chlorambucil complex bound to the *C variant is identical with the *A variant ruling out the hypothesis that primary structure differences between the variants cause structural changes at the active site. Finally, we show that chlorambucil is a very poor inhibitor of the enzyme in contrast to ethacrynic acid, which binds to the enzyme in a similar fashion but can act as both substrate and inhibitor.


Asunto(s)
Alelos , Antineoplásicos/metabolismo , Clorambucilo/metabolismo , Gutatión-S-Transferasa pi/química , Gutatión-S-Transferasa pi/metabolismo , Polimorfismo Genético , Antineoplásicos/química , Clorambucilo/química , Cristalografía por Rayos X , Estabilidad de Enzimas , Ácido Etacrínico/química , Glutatión/química , Gutatión-S-Transferasa pi/antagonistas & inhibidores , Gutatión-S-Transferasa pi/genética , Humanos , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estructura Secundaria de Proteína , Especificidad por Sustrato , Temperatura
15.
J Biol Chem ; 280(51): 42172-80, 2005 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-16195232

RESUMEN

We have recently shown that dinitrosyl diglutathionyl iron complex, a possible in vivo nitric oxide (NO) donor, binds with extraordinary affinity to one of the active sites of human glutathione transferase (GST) P1-1 and triggers negative cooperativity in the neighboring subunit of the dimer. This strong interaction has also been observed in the human Mu, Alpha, and Theta GST classes, suggesting a common mechanism by which GSTs may act as intracellular NO carriers or scavengers. We present here the crystal structure of GST P1-1 in complex with the dinitrosyl diglutathionyl iron ligand at high resolution. In this complex the active site Tyr-7 coordinates to the iron atom through its phenolate group by displacing one of the GSH ligands. The crucial importance of this catalytic residue in binding the nitric oxide donor is demonstrated by site-directed mutagenesis of this residue with His, Cys, or Phe residues. The relative binding affinity for the complex is strongly reduced in all three mutants by about 3 orders of magnitude with respect to the wild type. Electron paramagnetic resonance spectroscopy studies on intact Escherichia coli cells expressing the recombinant GST P1-1 enzyme indicate that bacterial cells, in response to NO treatment, are able to form the dinitrosyl diglutathionyl iron complex using intracellular iron and GSH. We hypothesize the complex is stabilized in vivo through binding to GST P1-1.


Asunto(s)
Compuestos Ferrosos/metabolismo , Gutatión-S-Transferasa pi/metabolismo , Donantes de Óxido Nítrico/metabolismo , Secuencia de Bases , Sitios de Unión , Cartilla de ADN , Compuestos Ferrosos/química , Glutatión/análogos & derivados , Gutatión-S-Transferasa pi/química , Humanos , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Donantes de Óxido Nítrico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA