Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Pollut ; 341: 122946, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37977364

RESUMEN

Plastics contain a mixture of chemical additives that can leach into the environment and potentially cause harmful effects on reproduction and the endocrine system. Two of these chemicals, N-butyl benzenesulfonamide (NBBS) and triphenyl phosphate (TPHP), are among the top 30 organic chemicals detected in surface and groundwater and are currently placed on international watchlist for evaluation. Although bans have been placed on legacy pollutants such as diethylhexyl phthalate (DEHP) and dibutyl phthalate (DBP), their persistence remains a concern. This study aimed to examine the impact of plastic additives, including NBBS, TPHP, DBP, and DEHP, on the reproductive behaviour and male fertility of the marine amphipod Echinogammarus marinus. Twenty precopulatory pairs of E. marinus were exposed to varying concentrations of the four test chemicals to assess their pairing behaviour. A high-throughput methodology was developed and optimised to record the contact time and re-pair time within 15 min and additional point observations for 96 h. The study found that low levels of NBBS, TPHP, and DEHP prolonged the contact and re-pairing time of amphipods and the proportion of pairs reduced drastically with re-pairing success ranging from 75% to 100% in the control group and 0%-85% in the exposed groups at 96 h. Sperm count declined by 40% and 60% in the 50 µg/l and 500 µg/l DBP groups, respectively, whereas TPHP resulted in significantly lower sperms in 50 µg/l exposed group. Animals exposed to NBBS and DEHP showed high interindividual variability in all exposed groups. Overall, this study provides evidence that plastic additives can disrupt the reproductive mechanisms and sperm counts of amphipods at environmentally relevant concentrations. Our research also demonstrated the usefulness of the precopulatory pairing mechanism as a sensitive endpoint in ecotoxicity assessments to proactively mitigate population-level effects in the aquatic environment.


Asunto(s)
Anfípodos , Dietilhexil Ftalato , Animales , Masculino , Dietilhexil Ftalato/farmacología , Semen , Dibutil Ftalato/farmacología , Fertilidad
2.
Sci Total Environ ; 918: 170793, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38336051

RESUMEN

Plastic additives are widely used in plastic production and are found in the environment owing to their widespread applications. Among these additives, N-butyl benzenesulfonamide (NBBS) and triphenyl phosphate (TPHP) are under international watchlist for evaluation, with limited studies on amphipods. Di-ethylhexyl phthalate (DEHP) and dibutyl phthalate (DBP) are banned in some countries and categorised as substances of very high concern. This study aimed to investigate the effects of NBBS, TPHP, DEHP and DBP on the swimming activity of a coastal intertidal marine amphipod, Echinogammarus marinus. Furthermore, this study is the first to quantify startle response in E. marinus in response to light stimuli. Amphipods were exposed to 0, 0.5, 5, 50 and 500 µg/l concentrations of all test compounds. Swimming activity and startle responses were assessed by video tracking and analysis using an 8-min alternating dark and light protocol after exposure on days 7 and 14. We observed an overall compound and light effect on the swimming activity of E. marinus. A significant decrease in swimming distance was found in 500 µg/l NBBS and TPHP. We observed that the startle response in E. marinus had a latency period of >2 s and animals were assessed at 1 s and the sum of the first 5 s. There was a clear startle response in E. marinus during dark to light transition, evident with increased swimming distance. NBBS exposure significantly increased startle response at environmental concentrations, while significant effects were only seen in 500 µg/l TPHP at 5 s. We found no significant effects of DEHP and DBP on swimming behaviour at the concentrations assessed. The findings of this study affirm the necessity for a continuous review of plastic additives to combat adverse behavioural effects that may be transferable to the population levels.


Asunto(s)
Anfípodos , Bencenosulfonamidas , Dietilhexil Ftalato , Ácidos Ftálicos , Animales , Natación , Dietilhexil Ftalato/análisis , Anfípodos/fisiología , Reflejo de Sobresalto , Dibutil Ftalato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA