Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Am Heart Assoc ; 13(2): e030927, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38226513

RESUMEN

BACKGROUND: There are ≈5 million annual dizziness visits to US emergency departments, of which vestibular strokes account for over 250 000. The head impulse, nystagmus, and test of skew eye examination can accurately distinguish vestibular strokes from peripheral dizziness. However, the eye-movement signs are subtle, and lack of familiarity and difficulty with recognition of abnormal eye movements are significant barriers to widespread emergency department use. To break this barrier, we sought to assess the accuracy of EyePhone, our smartphone eye-tracking application, for quantifying nystagmus. METHODS AND RESULTS: We prospectively enrolled healthy volunteers and recorded the velocity of induced nystagmus using a smartphone eye-tracking application (EyePhone) and then compared the results with video oculography (VOG). Following a calibration protocol, the participants viewed optokinetic stimuli with incremental velocities (2-12 degrees/s) in 4 directions. We extracted slow phase velocities from EyePhone data in each direction and compared them with the corresponding slow phase velocities obtained by the VOG. Furthermore, we calculated the area under the receiver operating characteristic curve for nystagmus detection by EyePhone. We enrolled 10 volunteers (90% men) with an average age of 30.2±6 years. EyePhone-recorded slow phase velocities highly correlated with the VOG recordings (r=0.98 for horizontal and r=0.94 for vertical). The calibration significantly increased the slope of linear regression for horizontal and vertical slow phase velocities. Evaluating the EyePhone's performance using VOG data with a 2 degrees/s threshold showed an area under the receiver operating characteristic curve of 0.87 for horizontal and vertical nystagmus detection. CONCLUSIONS: We demonstrated that EyePhone could accurately detect and quantify optokinetic nystagmus, similar to the VOG goggles.


Asunto(s)
Nistagmo Patológico , Accidente Cerebrovascular , Masculino , Humanos , Adulto Joven , Adulto , Femenino , Tecnología de Seguimiento Ocular , Mareo/diagnóstico , Teléfono Inteligente , Nistagmo Patológico/diagnóstico , Movimientos Oculares , Accidente Cerebrovascular/diagnóstico
2.
J Med Chem ; 56(17): 6651-65, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-23944843

RESUMEN

The hepatocyte growth factor (HGF)/c-Met signaling axis is deregulated in many cancers and plays important roles in tumor invasive growth and metastasis. An exclusively selective c-Met inhibitor (S)-6-(1-(6-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[4,3-b]pyridazin-3-yl)ethyl)quinoline (8) was discovered from a highly selective high-throughput screening hit via structure-based drug design and medicinal chemistry lead optimization. Compound 8 had many attractive properties meriting preclinical evaluation. Broad off-target screens identified 8 as a pan-phosphodiesterase (PDE) family inhibitor, which was implicated in a sustained increase in heart rate, increased cardiac output, and decreased contractility indices, as well as myocardial degeneration in in vivo safety evaluations in rats. Compound 8 was terminated as a preclinical candidate because of a narrow therapeutic window in cardio-related safety. The learning from multiparameter lead optimization and strategies to avoid the toxicity attrition at the late stage of drug discovery are discussed.


Asunto(s)
Cardiomiopatías/enzimología , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Animales , Femenino , Humanos , Ratones , Ratones Desnudos , Modelos Moleculares , Inhibidores de Fosfodiesterasa/química , Inhibidores de Proteínas Quinasas/química , Quinolinas/química , Ratas , Proteínas Tirosina Quinasas Receptoras/química
3.
Mol Cancer Ther ; 11(4): 1036-47, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22389468

RESUMEN

The c-Met pathway has been implicated in a variety of human cancers for its critical role in tumor growth, invasion, and metastasis. PF-04217903 is a novel ATP-competitive small-molecule inhibitor of c-Met kinase. PF-04217903 showed more than 1,000-fold selectivity for c-Met compared with more than 150 kinases, making it one of the most selective c-Met inhibitors described to date. PF-04217903 inhibited tumor cell proliferation, survival, migration/invasion in MET-amplified cell lines in vitro, and showed marked antitumor activity in tumor models harboring either MET gene amplification or a hepatocyte growth factor (HGF)/c-Met autocrine loop at well-tolerated dose levels in vivo. Antitumor efficacy of PF-04217903 was dose-dependent and showed a strong correlation with inhibition of c-Met phosphorylation, downstream signaling, and tumor cell proliferation/survival. In human xenograft models that express relatively high levels of c-Met, complete inhibition of c-Met activity by PF-04217903 only led to partial tumor growth inhibition (38%-46%) in vivo. The combination of PF-04217903 with Recepteur d'origine nantais (RON) short hairpin RNA (shRNA) knockdown in the HT29 model that also expresses activated RON kinase-induced tumor cell apoptosis and resulted in enhanced antitumor efficacy (77%) compared with either PF-04217903 (38%) or RON shRNA alone (56%). PF-04217903 also showed potent antiangiogenic properties in vitro and in vivo. Furthermore, PF-04217903 strongly induced phospho-PDGFRß (platelet-derived growth factor receptor) levels in U87MG xenograft tumors, indicating a possible oncogene switching mechanism in tumor cell signaling as a potential resistance mechanism that might compromise tumor responses to c-Met inhibitors. Collectively, these results show the use of highly selective inhibition of c-Met and provide insight toward targeting tumors exhibiting different mechanisms of c-Met dysregulation.


Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , Pirazinas/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Triazoles/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Ratones , Ratones Desnudos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Med Chem ; 55(18): 8091-109, 2012 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-22924734

RESUMEN

The c-MET receptor tyrosine kinase is an attractive oncology target because of its critical role in human oncogenesis and tumor progression. An oxindole hydrazide hit 6 was identified during a c-MET HTS campaign and subsequently demonstrated to have an unusual degree of selectivity against a broad array of other kinases. The cocrystal structure of the related oxindole hydrazide c-MET inhibitor 10 with a nonphosphorylated c-MET kinase domain revealed a unique binding mode associated with the exquisite selectivity profile. The chemically labile oxindole hydrazide scaffold was replaced with a chemically and metabolically stable triazolopyrazine scaffold using structure based drug design. Medicinal chemistry lead optimization produced 2-(4-(1-(quinolin-6-ylmethyl)-1H-[1,2,3]triazolo[4,5-b]pyrazin-6-yl)-1H-pyrazol-1-yl)ethanol (2, PF-04217903), an extremely potent and exquisitely selective c-MET inhibitor. 2 demonstrated effective tumor growth inhibition in c-MET dependent tumor models with good oral PK properties and an acceptable safety profile in preclinical studies. 2 progressed to clinical evaluation in a Phase I oncology setting.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Pirazinas/farmacología , Triazoles/farmacología , Secuencia de Aminoácidos , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Línea Celular Tumoral , Estabilidad de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos , Indoles/química , Modelos Moleculares , Datos de Secuencia Molecular , Oxindoles , Conformación Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-met/química , Proteínas Proto-Oncogénicas c-met/metabolismo , Pirazinas/química , Pirazinas/metabolismo , Especificidad por Sustrato , Triazoles/química , Triazoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA