RESUMEN
BACKGROUND: Circulating tumour DNA (ctDNA) carrying tumour-specific sequence alterations may provide a minimally invasive means to dynamically assess tumour burden and response to treatment in cancer patients. Somatic TP53 mutations are a defining feature of high-grade serous ovarian carcinoma (HGSOC). We tested whether these mutations could be used as personalised markers to monitor tumour burden and early changes as a predictor of response and time to progression (TTP). METHODS AND FINDINGS: We performed a retrospective analysis of serial plasma samples collected during routine clinical visits from 40 patients with HGSOC undergoing heterogeneous standard of care treatment. Patient-specific TP53 assays were developed for 31 unique mutations identified in formalin-fixed paraffin-embedded tumour DNA from these patients. These assays were used to quantify ctDNA in 318 plasma samples using microfluidic digital PCR. The TP53 mutant allele fraction (TP53MAF) was compared to serum CA-125, the current gold-standard response marker for HGSOC in blood, as well as to disease volume on computed tomography scans by volumetric analysis. Changes after one cycle of treatment were compared with TTP. The median TP53MAF prior to treatment in 51 relapsed treatment courses was 8% (interquartile range [IQR] 1.2%-22%) compared to 0.7% (IQR 0.3%-2.0%) for seven untreated newly diagnosed stage IIIC/IV patients. TP53MAF correlated with volumetric measurements (Pearson r = 0.59, p < 0.001), and this correlation improved when patients with ascites were excluded (r = 0.82). The ratio of TP53MAF to volume of disease was higher in relapsed patients (0.04% per cm3) than in untreated patients (0.0008% per cm3, p = 0.004). In nearly all relapsed patients with disease volume > 32 cm3, ctDNA was detected at ≥20 amplifiable copies per millilitre of plasma. In 49 treatment courses for relapsed disease, pre-treatment TP53MAF concentration, but not CA-125, was associated with TTP. Response to chemotherapy was seen earlier with ctDNA, with a median time to nadir of 37 d (IQR 28-54) compared with a median time to nadir of 84 d (IQR 42-116) for CA-125. In 32 relapsed treatment courses evaluable for response after one cycle of chemotherapy, a decrease in TP53MAF of >60% was an independent predictor of TTP in multivariable analysis (hazard ratio 0.22, 95% CI 0.07-0.67, p = 0.008). Conversely, a decrease in TP53MAF of ≤60% was associated with poor response and identified cases with TTP < 6 mo with 71% sensitivity (95% CI 42%-92%) and 88% specificity (95% CI 64%-99%). Specificity was improved when patients with recent drainage of ascites were excluded. Ascites drainage led to a reduction of TP53MAF concentration. The limitations of this study include retrospective design, small sample size, and heterogeneity of treatment within the cohort. CONCLUSIONS: In this retrospective study, we demonstrated that ctDNA is correlated with volume of disease at the start of treatment in women with HGSOC and that a decrease of ≤60% in TP53MAF after one cycle of chemotherapy was associated with shorter TTP. These results provide evidence that ctDNA has the potential to be a highly specific early molecular response marker in HGSOC and warrants further investigation in larger cohorts receiving uniform treatment.
Asunto(s)
Carcinoma/sangre , Carcinoma/genética , ADN de Neoplasias/sangre , ADN de Neoplasias/genética , Neoplasias Ováricas/sangre , Neoplasias Ováricas/genética , Proteína p53 Supresora de Tumor/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , Carcinoma/metabolismo , Femenino , Humanos , Persona de Mediana Edad , Mutación , Células Neoplásicas Circulantes/metabolismo , Neoplasias Ováricas/metabolismo , Estudios Retrospectivos , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
BACKGROUND: The major clinical challenge in the treatment of high-grade serous ovarian cancer (HGSOC) is the development of progressive resistance to platinum-based chemotherapy. The objective of this study was to determine whether intra-tumour genetic heterogeneity resulting from clonal evolution and the emergence of subclonal tumour populations in HGSOC was associated with the development of resistant disease. METHODS AND FINDINGS: Evolutionary inference and phylogenetic quantification of heterogeneity was performed using the MEDICC algorithm on high-resolution whole genome copy number profiles and selected genome-wide sequencing of 135 spatially and temporally separated samples from 14 patients with HGSOC who received platinum-based chemotherapy. Samples were obtained from the clinical CTCR-OV03/04 studies, and patients were enrolled between 20 July 2007 and 22 October 2009. Median follow-up of the cohort was 31 mo (interquartile range 22-46 mo), censored after 26 October 2013. Outcome measures were overall survival (OS) and progression-free survival (PFS). There were marked differences in the degree of clonal expansion (CE) between patients (median 0.74, interquartile range 0.66-1.15), and dichotimization by median CE showed worse survival in CE-high cases (PFS 12.7 versus 10.1 mo, p = 0.009; OS 42.6 versus 23.5 mo, p = 0.003). Bootstrap analysis with resampling showed that the 95% confidence intervals for the hazard ratios for PFS and OS in the CE-high group were greater than 1.0. These data support a relationship between heterogeneity and survival but do not precisely determine its effect size. Relapsed tissue was available for two patients in the CE-high group, and phylogenetic analysis showed that the prevalent clonal population at clinical recurrence arose from early divergence events. A subclonal population marked by a NF1 deletion showed a progressive increase in tumour allele fraction during chemotherapy. CONCLUSIONS: This study demonstrates that quantitative measures of intra-tumour heterogeneity may have predictive value for survival after chemotherapy treatment in HGSOC. Subclonal tumour populations are present in pre-treatment biopsies in HGSOC and can undergo expansion during chemotherapy, causing clinical relapse.
Asunto(s)
Alelos , ADN de Neoplasias , Resistencia a Antineoplásicos , Variación Genética , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Ováricas/genética , Filogenia , Platino (Metal)/uso terapéutico , Anciano , Algoritmos , Carcinoma Epitelial de Ovario , Supervivencia sin Enfermedad , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Glandulares y Epiteliales/tratamiento farmacológico , Neoplasias Glandulares y Epiteliales/mortalidad , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/mortalidadRESUMEN
BACKGROUND: Granulosa-cell tumors (GCTs) are the most common type of malignant ovarian sex cord-stromal tumor (SCST). The pathogenesis of these tumors is unknown. Moreover, their histopathological diagnosis can be challenging, and there is no curative treatment beyond surgery. METHODS: We analyzed four adult-type GCTs using whole-transcriptome paired-end RNA sequencing. We identified putative GCT-specific mutations that were present in at least three of these samples but were absent from the transcriptomes of 11 epithelial ovarian tumors, published human genomes, and databases of single-nucleotide polymorphisms. We confirmed these variants by direct sequencing of complementary DNA and genomic DNA. We then analyzed additional tumors and matched normal genomic DNA, using a combination of direct sequencing, analyses of restriction-fragment-length polymorphisms, and TaqMan assays. RESULTS: All four index GCTs had a missense point mutation, 402C-->G (C134W), in FOXL2, a gene encoding a transcription factor known to be critical for granulosa-cell development. The FOXL2 mutation was present in 86 of 89 additional adult-type GCTs (97%), in 3 of 14 thecomas (21%), and in 1 of 10 juvenile-type GCTs (10%). The mutation was absent in 49 SCSTs of other types and in 329 unrelated ovarian or breast tumors. CONCLUSIONS: Whole-transcriptome sequencing of four GCTs identified a single, recurrent somatic mutation (402C-->G) in FOXL2 that was present in almost all morphologically identified adult-type GCTs. Mutant FOXL2 is a potential driver in the pathogenesis of adult-type GCTs.
Asunto(s)
Factores de Transcripción Forkhead/genética , Tumor de Células de la Granulosa/genética , Mutación Missense , Neoplasias Ováricas/genética , Secuencia de Bases , Femenino , Proteína Forkhead Box L2 , Perfilación de la Expresión Génica , Marcadores Genéticos , Genotipo , Tumor de Células de la Granulosa/diagnóstico , Tumor de Células de la Granulosa/patología , Humanos , Inmunohistoquímica , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/patología , Mutación Puntual , Análisis de Secuencia de ARN , Polimerasa TaqRESUMEN
BACKGROUND: Melanoma is the most aggressive form of skin cancer, with a tendency to metastasise to any organ of the human body. While the most common body organs affected include liver, lungs, brain and soft tissues, spread to the gastrointestinal tract is not uncommon. In the bowel, it can present with a multitude of imaging appearances, more rarely as an aneurysmal dilatation. This appearance is classically associated with lymphoma, but it has more rarely been associated with other forms of malignancy. CASE PRESENTATION: We report a case series of three patients with aneurysmal dilatation in the small bowel (SB) confirmed to be due to metastatic melanoma (MM). All patients had non-specific symptoms; most times being attributed initially to causes other than melanoma. On CT the identified aneurysmal SB dilatations were diagnosed as presumed lymphoma in all cases. In two cases, the aneurysmal dilatation was the first presentation of metastatic disease and in two of the cases more than one site of the gastrointestinal tract was concomitantly involved. All patients underwent surgical resection with histological confirmation of MM. CONCLUSIONS: Recognition of unusual SB presentation of MM, such as aneurysmal SB dilatation, is important to expedite diagnosis, provide appropriate treatment, and consequently improve quality of life and likely survival of these patients. As the most common cancer to metastasise to the SB and as a known imaging mimicker, MM should remain in any radiologist's differential diagnosis for SB lesions with aneurysmal dilatation.
Asunto(s)
Melanoma , Neoplasias Cutáneas , Abdomen , Humanos , Intestino Delgado/patología , Melanoma/diagnóstico por imagen , Melanoma/patología , Calidad de Vida , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/patologíaRESUMEN
Melanoma is the most aggressive form of skin cancer, with tendency to spread to any organ of the human body, including the gastrointestinal tract (GIT). The diagnosis of metastases to the GIT can be difficult, as they may be clinically silent for somewhile and may occur years after the initial melanoma diagnosis. CT imaging remains the standard modality for staging and surveillance of melanoma patients, and in most cases, it will be the first imaging modality to identify GIT lesions. However, interpretation of CT studies in patients with melanoma can be challenging as lesions may be subtle and random in distribution, as well as sometimes mimicking other conditions. Even so, early diagnosis of GIT metastases is critical to avoid emergency hospitalisations, whilst surgical intervention can be curative in some cases. In this review, we illustrate the various imaging presentations of melanoma metastases within the GIT, discuss the clinical aspects and offer advice on investigation and management. We offer tips intended to aid radiologists in their diagnostic skills and interpretation of melanoma imaging scans.
RESUMEN
Objectives: To investigate the relationship between magnetization transfer (MT) imaging and tissue macromolecules in high-grade serous ovarian cancer (HGSOC) and whether MT ratio (MTR) changes following neoadjuvant chemotherapy (NACT). Methods: This was a prospective observational study. 12 HGSOC patients were imaged before treatment. MTR was compared to quantified tissue histology and immunohistochemistry. For a subset of patients (n = 5), MT imaging was repeated after NACT. The Shapiro-Wilk test was used to assess for normality of data and Spearman's rank-order or Pearson's correlation tests were then used to compare MTR with tissue quantifications. The Wilcoxon signed-rank test was used to assess for changes in MTR after treatment. Results: Treatment-naïve tumour MTR was 21.9 ± 3.1% (mean ± S.D.). MTR had a positive correlation with cellularity, rho = 0.56 (p < 0.05) and a negative correlation with tumour volume, ρ = -0.72 (p = 0.01). MTR did not correlate with the extracellular proteins, collagen IV or laminin (p = 0.40 and p = 0.90). For those patients imaged before and after NACT, an increase in MTR was observed in each case with mean MTR 20.6 ± 3.1% (median 21.1) pre-treatment and 25.6 ± 3.4% (median 26.5) post-treatment (p = 0.06). Conclusion: In treatment-naïve HGSOC, MTR is associated with cellularity, possibly reflecting intracellular macromolecular concentration. MT may also detect the HGSOC response to NACT, however larger studies are required to validate this finding. Advances in knowledge: MTR in HGSOC is influenced by cellularity. This may be applied to assess for cell changes following treatment.
RESUMEN
The aim of this study was to assess the feasibility of rapid sodium MRI (23Na-MRI) for the imaging of peritoneal cancer deposits in high grade serous ovarian cancer (HGSOC) and to evaluate the relationship of 23Na-MRI with tumour cellularity. 23Na-MRI was performed at 3 T on twelve HGSOC patients using a 3D-cones acquisition technique. Tumour biopsies specimens were collected after imaging and cellularity was measured from histology. Total 23Na-MRI scan time for each patient was approximately 11 min. At an isotropic resolution of 5.6 mm, signal-to-noise ratios (SNRs) of 82.2 ± 15.3 and 15.1 ± 7.1 (mean ± standard deviation) were achieved for imaging of tumour tissue sodium concentration (TSC) and intracellular weighted sodium concentration (IWS) respectively. Tumour TSC and IWS concentrations were: 56.8 ± 19.1 mM and 30.8 ± 9.2 mM respectively and skeletal muscle TSC and IWS concentrations were 33.2 ± 16.3 mM and 20.5 ± 9.9 mM respectively. There were significant sodium concentration differences between cancer and skeletal muscle, Wilcoxon signed-rank test, P < 0.001 for TSC and P = 0.01 for IWS imaging. Tumour cellularity displayed a strong negative correlation with TSC, Spearman's rho = -0.92, P < 0.001, but did not correlate with IWS. This study demonstrates that 23Na-MRI using 3D-cones can rapidly assess sodium concentration in peritoneal deposits of HGSOC and that TSC may serve as a biomarker of tumour cellularity.
RESUMEN
Existing methods to improve detection of circulating tumor DNA (ctDNA) have focused on genomic alterations but have rarely considered the biological properties of plasma cell-free DNA (cfDNA). We hypothesized that differences in fragment lengths of circulating DNA could be exploited to enhance sensitivity for detecting the presence of ctDNA and for noninvasive genomic analysis of cancer. We surveyed ctDNA fragment sizes in 344 plasma samples from 200 patients with cancer using low-pass whole-genome sequencing (0.4×). To establish the size distribution of mutant ctDNA, tumor-guided personalized deep sequencing was performed in 19 patients. We detected enrichment of ctDNA in fragment sizes between 90 and 150 bp and developed methods for in vitro and in silico size selection of these fragments. Selecting fragments between 90 and 150 bp improved detection of tumor DNA, with more than twofold median enrichment in >95% of cases and more than fourfold enrichment in >10% of cases. Analysis of size-selected cfDNA identified clinically actionable mutations and copy number alterations that were otherwise not detected. Identification of plasma samples from patients with advanced cancer was improved by predictive models integrating fragment length and copy number analysis of cfDNA, with area under the curve (AUC) >0.99 compared to AUC <0.80 without fragmentation features. Increased identification of cfDNA from patients with glioma, renal, and pancreatic cancer was achieved with AUC > 0.91 compared to AUC < 0.5 without fragmentation features. Fragment size analysis and selective sequencing of specific fragment sizes can boost ctDNA detection and could complement or provide an alternative to deeper sequencing of cfDNA.
Asunto(s)
ADN Tumoral Circulante/análisis , ADN Tumoral Circulante/química , Animales , ADN Tumoral Circulante/sangre , Variaciones en el Número de Copia de ADN/genética , Genoma Humano , Humanos , Aprendizaje Automático , Ratones , Mutación/genética , Secuenciación Completa del GenomaRESUMEN
INTRODUCTION: Hepatotoxicity from T-cell checkpoint blockade is an increasingly common immune-related adverse event, but remains poorly characterised and can be challenging to manage. Such toxicity is generally considered to resemble autoimmune hepatitis, although this assumption is extrapolated from limited clinicopathological reports of anti-cytotoxic T-lymphocyte-associated protein 4-induced hepatotoxicity. METHODS: Here we report, with full clinicopathological correlation, three cases of T-cell checkpoint inhibitor-induced hepatotoxicity associated with anti-programmed cell death protein 1 agents. RESULTS: We find that a major feature of these cases is biliary injury, including a unique case of vanishing bile duct syndrome, and that such toxicity was poorly responsive to long-term immunosuppression (corticosteroids and mycophenolate mofetil). Any potential benefits of long-term immunosuppression in these cases were outweighed by therapy-related complications. DISCUSSION: We discuss potential aetiologies and risk factors for immune-mediated biliary toxicity in the context of the limited literature in this field, and provide guidance for the investigation and supportive management of affected patients.
RESUMEN
UNLABELLED: Malignant ovarian germ cell tumors are rare, highly curable cancers of young women. The majority of patients can be cured with either fertility-preserving surgery alone or a combination of surgery and chemotherapy. Relapses occur in 10% to 20% of patients, and the significant proportion of them can be salvaged with chemotherapy. There is no evidence that treatment for malignant ovarian germ cell tumors will adversely affect menstrual or reproductive functions, increase future pregnancy loss, or increase the risk of congenital malformations of the fetus. Late effects, such as secondary leukemia, from chemotherapy are reported but rare. TARGET AUDIENCE: Obstetricians & Gynecologists and Family Physicians. LEARNING OBJECTIVE: After completing this CME activity, physicians should be better able to diagnose ovarian germ cell tumors, outline management of malignant ovarian germ cell tumors, and understand the impact of treatment on fertility and late effects.
Asunto(s)
Neoplasias de Células Germinales y Embrionarias/terapia , Neoplasias Ováricas/terapia , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Femenino , Humanos , Neoplasias de Células Germinales y Embrionarias/diagnóstico , Neoplasias de Células Germinales y Embrionarias/epidemiología , Neoplasias de Células Germinales y Embrionarias/metabolismo , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/epidemiología , Neoplasias Ováricas/metabolismo , Ovariectomía , PronósticoRESUMEN
Malignancy is a well-recognised complication of transplantation and can occur de novo, as a recurrence of a pre-existing malignancy, or from transmission of malignancy from the donor. Common de-novo malignancies are those of the skin and the lymphoreticular system. Various solid-organ cancers have also been reported in transplant recipients and each poses a unique management challenge in view of the unusual setting. We review solid-organ cancers in transplant recipients and their management, including surveillance and prevention.