Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
FASEB J ; 38(16): e70001, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39139033

RESUMEN

Interferon-gamma (IFNγ) is traditionally recognized for its pro-inflammatory role during intestinal inflammation. Here, we demonstrate that IFNγ also functions as a pro-repair molecule by increasing TNFα receptor 2 (TNFR2 protein/TNFRSF1B gene) expression on intestinal epithelial cells (IEC) following injury in vitro and in vivo. In silico analyses identified binding sites for the IFNγ signaling transcription factor STAT1 in the promoter region of TNFRSF1B. Scratch-wounded IEC exposed to IFNγ exhibited a STAT1-dependent increase in TNFR2 expression. In situ hybridization revealed elevated Tnfrsf1b mRNA levels in biopsy-induced colonic mucosal wounds, while intraperitoneal administration of IFNγ neutralizing antibodies following mucosal injury resulted in impaired IEC Tnfrsf1b mRNA and inhibited colonic mucosal repair. These findings challenge conventional notions that "pro-inflammatory" mediators solely exacerbate damage by highlighting latent pro-repair functions. Moreover, these results emphasize the critical importance of timing and amount in the synthesis and release of IFNγ and TNFα during the inflammatory process, as they are pivotal in restoring tissue homeostasis.


Asunto(s)
Colon , Interferón gamma , Mucosa Intestinal , Receptores Tipo II del Factor de Necrosis Tumoral , Factor de Transcripción STAT1 , Transducción de Señal , Interferón gamma/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Animales , Humanos , Colon/metabolismo , Colon/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Factor de Transcripción STAT1/metabolismo , Ratones , Cicatrización de Heridas/fisiología , Ratones Endogámicos C57BL , Masculino , Células Epiteliales/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
JCI Insight ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078701

RESUMEN

Thrombospondin-1 (TSP1) is a matricellular protein associated with the regulation of cell migration through direct binding interactions with integrin proteins and by associating with other receptors known to regulate integrin function, including CD47 and CD36. We previously demonstrated that deletion of an epithelial TSP1 receptor CD47 attenuates epithelial wound repair following intestinal mucosal injury. However, the mechanisms by which TSP1 contributes to intestinal mucosal repair remains poorly understood. Our results show upregulated TSP1 expression in colonic mucosal wounds and impaired intestinal mucosal wound healing in vivo upon intestinal epithelial specific loss of TSP1 (VillinCre/+Thbs1f/f or Thbs1ΔIEC). We report that exposure to exogenous TSP1 enhanced migration of IECs in a CD47- and TGFß1-dependent manner, and that deficiency of TSP1 in primary murine colonic epithelial cells resulted in impaired wound healing. Mechanistically, TSP1 modulated epithelial actin cytoskeletal dynamics by suppression of RhoA activity, activation of Rac1, and changes in F-actin bundling. Overall, TSP1 was found to regulate intestinal mucosal wound healing via CD47 and TGFß1, coordinate integrin-containing cell-matrix adhesion dynamics and remodel the actin cytoskeleton in migrating epithelial cells to enhance cell motility and promote wound repair.

3.
Sci Immunol ; 9(98): eadk9872, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121194

RESUMEN

The Aedes aegypti mosquito is a vector of many infectious agents, including flaviviruses such as Zika virus. Components of mosquito saliva have pleomorphic effects on the vertebrate host to enhance blood feeding, and these changes also create a favorable niche for pathogen replication and dissemination. Here, we demonstrate that human CD47, which is known to be involved in various immune processes, interacts with a 34-kilodalton mosquito salivary protein named Nest1. Nest1 is up-regulated in blood-fed female A. aegypti and facilitates Zika virus dissemination in human skin explants. Nest1 has a stronger affinity for CD47 than its natural ligand, signal regulatory protein α, competing for binding at the same interface. The interaction between Nest1 with CD47 suppresses phagocytosis by human macrophages and inhibits proinflammatory responses by white blood cells, thereby suppressing antiviral responses in the skin. This interaction elucidates how an arthropod protein alters the human response to promote arbovirus infectivity.


Asunto(s)
Aedes , Piel , Virus Zika , Aedes/inmunología , Aedes/virología , Animales , Humanos , Piel/inmunología , Piel/virología , Virus Zika/inmunología , Virus Zika/fisiología , Femenino , Proteínas de Insectos/inmunología , Infección por el Virus Zika/inmunología , Proteínas y Péptidos Salivales/inmunología , Mosquitos Vectores/inmunología , Mosquitos Vectores/virología , Antígeno CD47
4.
Adv Healthc Mater ; : e2400237, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691819

RESUMEN

Food allergy is a prevalent, potentially deadly disease caused by inadvertent sensitization to benign food antigens. Pathogenic Th2 cells are a major driver for disease, and allergen-specific immunotherapies (AIT) aim to increase the allergen threshold required to elicit severe allergic symptoms. However, the majority of AIT approaches require lengthy treatments and convey transient disease suppression, likely due to insufficient targeting of pathogenic Th2 responses. Here, the ability of allergen-encapsulating nanoparticles to directly suppress pathogenic Th2 responses and reactivity is investigated in a mouse model of food allergy. NPs associate with pro-tolerogenic antigen presenting cells, provoking accumulation of antigen-specific, functionally suppressive regulatory T cells in the small intestine lamina propria. Two intravenous doses of allergen encapsulated in poly(lactide-co-glycolide) nanoparticles (NPs) significantly reduces oral food challenge (OFC)-induced anaphylaxis. Importantly, NP treatment alters the fates of pathogenic allergen-specific Th2 cells, reprogramming these cells toward CD25+FoxP3+ regulatory and CD73+FR4+ anergic phenotypes. NP-mediated reductions in the frequency of effector cells in the gut and mast cell degranulation following OFC are also demonstrated. These studies reveal mechanisms by which an allergen-encapsulating NP therapy and, more broadly, allergen-specific immunotherapies, can rapidly attenuate allergic responses by targeting pathogenic Th2 cells.

5.
Mem. Inst. Oswaldo Cruz ; 100(supl.1): 191-198, Mar. 2005.
Artículo en Inglés | LILACS | ID: lil-402199

RESUMEN

The symptomatic phases of many inflammatory diseases are characterized by migration of large numbers of neutrophils (PMN) across a polarized epithelium and accumulation within a lumen. For example, acute PMN influx is common in diseases of the gastrointestinal system (ulcerative colitis, Crohn's disease, bacterial enterocolitis, gastritis), hepatobiliary system (cholangitis, acute cholecystitis), respiratory tract (bronchial pneumonia, bronchitis, cystic fibrosis, bronchiectasis), and urinary tract (pyelonephritis, cystitis). Despite these observations, the molecular basis of leukocyte interactions with epithelial cells is incompletely understood. In vitro models of PMN transepithelial migration typically use N-formylated bacterial peptides such as fMLP in isolation to drive human PMNs across epithelial monolayers. However, other microbial products such as lipopolysaccharide (LPS) are major constituents of the intestinal lumen and have potent effects on the immune system. In the absence of LPS, we have shown that transepithelial migration requires sequential adhesive interactions between the PMN beta2 integrin CD11b/CD18 and JAM protein family members. Other epithelial ligands appear to be abundantly represented as fucosylated proteoglycans. Further studies indicate that the rate of PMN migration across mucosal surfaces can be regulated by the ubiquitously expressed transmembrane protein CD47 and microbial-derived factors, although many of the details remain unclear. Current data suggests that Toll-like receptors (TLR), which recognize specific pathogen-associated molecular patterns (PAMPs), are differentially expressed on both leukocytes and mucosal epithelial cells while serving to modulate leukocyte-epithelial interactions. Exposure of epithelial TLRs to microbial ligands has been shown to result in transcriptional upregulation of inflammatory mediators whereas ligation of leukocyte TLRs modulate specific antimicrobial responses. A better understanding of these events will hopefully provide new insights into the mechanisms of epithelial responses to microorganisms and ideas for therapies aimed at inhibiting the deleterious consequences of mucosal inflammation.


Asunto(s)
Humanos , Movimiento Celular/fisiología , Células Epiteliales/fisiología , Mucositis/inmunología , Neutrófilos/fisiología , Receptores Toll-Like/fisiología , Movimiento Celular/inmunología , Células Epiteliales/inmunología , Membrana Mucosa/inmunología , Membrana Mucosa/fisiología , Neutrófilos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA