Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Int J Radiat Oncol Biol Phys ; 109(1): 60-72, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32841681

RESUMEN

PURPOSE: Although vascular alterations in solid tumor malignancies are known to decrease therapeutic delivery, the effects of leukemia-induced bone marrow vasculature (BMV) alterations on therapeutic delivery are not well known. Additionally, functional quantitative measurements of the leukemic BMV during chemotherapy and radiation therapy are limited, largely due to a lack of high-resolution imaging techniques available preclinically. This study develops a murine model using compartmental modeling for quantitative multiphoton microscopy (QMPM) to characterize the malignant BMV before and during treatment. METHODS AND MATERIALS: Using QMPM, live time-lapsed images of dextran leakage from the local BMV to the surrounding bone marrow of mice bearing acute lymphoblastic leukemia (ALL) were taken and fit to a 2-compartment model to measure the transfer rate (Ktrans), fractional extracellular extravascular space (νec), and vascular permeability parameters, as well as functional single-vessel characteristics. In response to leukemia-induced BMV alterations, the effects of 2 to 4 Gy low-dose radiation therapy (LDRT) on the BMV, drug delivery, and mouse survival were assessed post-treatment to determine whether neoadjuvant LDRT before chemotherapy improves treatment outcome. RESULTS: Mice bearing ALL had significantly altered Ktrans, increased νec, and increased permeability compared with healthy mice. Angiogenesis, decreased single-vessel perfusion, and decreased vessel diameter were observed. BMV alterations resulted in disease-dependent reductions in cellular uptake of Hoechst dye. LDRT to mice bearing ALL dilated BMV, increased single-vessel perfusion, and increased daunorubicin uptake by ALL cells. Consequently, LDRT administered to mice before receiving nilotinib significantly increased survival compared with mice receiving LDRT after nilotinib, demonstrating the importance of LDRT conditioning before therapeutic administration. CONCLUSION: The developed QMPM enables single-platform assessments of the pharmacokinetics of fluorescent agents and characterization of the BMV. Initial results suggest BMV alterations after neoadjuvant LDRT may contribute to enhanced drug delivery and increased treatment efficacy for ALL. The developed QMPM enables observations of the BMV for use in ALL treatment optimization.


Asunto(s)
Médula Ósea/irrigación sanguínea , Terapia Neoadyuvante , Neovascularización Patológica , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatología , Leucemia-Linfoma Linfoblástico de Células Precursoras/radioterapia , Dosis de Radiación , Animales , Línea Celular Tumoral , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Dosificación Radioterapéutica , Microambiente Tumoral/efectos de la radiación
2.
Int J Radiat Oncol Biol Phys ; 111(3): 671-683, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34119592

RESUMEN

PURPOSE: Total marrow irradiation (TMI) has significantly advanced radiation conditioning for hematopoietic cell transplantation in hematologic malignancies by reducing conditioning-induced toxicities and improving survival outcomes in relapsed/refractory patients. However, the relapse rate remains high, and the lack of a preclinical TMI model has hindered scientific advancements. To accelerate TMI translation to the clinic, we developed a TMI delivery system in preclinical models. METHODS AND MATERIALS: A Precision X-RAD SmART irradiator was used for TMI model development. Images acquired with whole-body contrast-enhanced computed tomography (CT) were used to reconstruct and delineate targets and vital organs for each mouse. Multiple beam and CT-guided Monte Carlo-based plans were performed to optimize doses to the targets and to vary doses to the vital organs. Long-term engraftment and reconstitution potential were evaluated by a congenic bone marrow transplantation (BMT) model and serial secondary BMT, respectively. Donor cell engraftment was measured using noninvasive bioluminescence imaging and flow cytometry. RESULTS: Multimodal imaging enabled identification of targets (skeleton and spleen) and vital organs (eg, lungs, gut, liver). In contrast to total body irradiation (TBI), TMI treatment allowed variation of radiation dose exposure to organs relative to the target dose. Dose reduction mirrored that in clinical TMI studies. Similar to TBI, mice treated with different TMI regimens showed full long-term donor engraftment in primary BMT and second serial BMT. The TBI-treated mice showed acute gut damage, which was minimized in mice treated with TMI. CONCLUSIONS: A novel multimodal image guided preclinical TMI model is reported here. TMI conditioning maintained long-term engraftment with reconstitution potential and reduced organ damage. Therefore, this TMI model provides a unique opportunity to study the therapeutic benefit of reduced organ damage and BM dose escalation to optimize treatment regimens in BMT and hematologic malignancies.


Asunto(s)
Trasplante de Médula Ósea , Neoplasias Hematológicas , Animales , Médula Ósea/diagnóstico por imagen , Humanos , Ratones , Recurrencia Local de Neoplasia , Acondicionamiento Pretrasplante , Irradiación Corporal Total
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA