RESUMEN
INTRODUCTION: Weaning patients from mechanical ventilation is crucial in the management of acute respiratory failure (ARF). Spontaneous breathing trials (SBT) are used to assess readiness for extubation, but extubation failure remains a challenge. Diaphragmatic function, measured by electrical activity of the diaphragm (EAdi), may provide insights into weaning outcomes. MATERIALS AND METHODS: This prospective, observational study included difficult-to-wean patients undergoing invasive mechanical ventilation. EAdi was recorded before, during, and after extubation. Patients were categorized into extubation success and failure groups based on reintubation within 48 h. Statistical analysis assessed EAdi patterns and predictive value. RESULTS: Thirty-one patients were analyzed, with six experiencing extubation failure. Overall, EAdi increased significantly between the phases before the SBT, the SBT and post-extubation period, up to 24 h (p < 0.001). EAdi values were higher in the extubation failure group during SBT (p = 0.01). An EAdi > 30 µV during SBT predicted extubation failure with 92% sensitivity and 67% specificity. Multivariable analysis confirmed EAdi as an independent predictor of extubation failure. CONCLUSIONS: In difficult-to-wean patients, EAdi increases significantly between the phases before the SBT, the SBT and post-extubation period and is significantly higher in patients experiencing extubation failure. An EAdi > 30 µV during SBT may enhance extubation failure prediction compared to conventional parameters. Advanced monitoring of diaphragmatic function could improve weaning outcomes in critical care settings.
Asunto(s)
Extubación Traqueal , Diafragma , Desconexión del Ventilador , Humanos , Desconexión del Ventilador/métodos , Diafragma/fisiopatología , Masculino , Femenino , Estudios Prospectivos , Persona de Mediana Edad , Anciano , Extubación Traqueal/métodos , Extubación Traqueal/estadística & datos numéricos , Factores de Tiempo , Respiración Artificial/métodos , Insuficiencia Respiratoria/terapia , Insuficiencia Respiratoria/fisiopatología , Valor Predictivo de las PruebasRESUMEN
OBJECTIVE: To explore combined non-invasive-respiratory-support (NIRS) patterns, reasons for NIRS switching, and their potential impact on clinical outcomes in acute-hypoxemic-respiratory-failure (AHRF) patients. DESIGN: Retrospective, single-center observational study. SETTING: Intensive Care Medicine. PATIENTS: AHRF patients (cardiac origin and respiratory acidosis excluded) underwent combined NIRS therapies such as non-invasive-ventilation (NIV) and High-Flow-Nasal-Cannula (HFNC). INTERVENTIONS: Patients were classified based on the first NIRS switch performed (HFNC-to-NIV or NIV-to-HFNC), and further specific NIRS switching strategies (NIV trial-like vs. Non-NIV trial-like and single vs. multiples switches) were independently evaluated. MAIN VARIABLES OF INTEREST: Reasons for switching, NIRS failure and mortality rates. RESULTS: A total of 63 patients with AHRF were included, receiving combined NIRS, 58.7% classified in the HFNC-to-NIV group and 41.3% in the NIV-to-HFNC group. Reason for switching from HFNC to NIV was AHRF worsening (100%), while from NIV to HFNC was respiratory improvement (76.9%). NIRS failure rates were higher in the HFNC-to-NIV than in NIV-to-HFNC group (81% vs. 35%, p < 0.001). Among HFNC-to-NIV patients, there was no difference in the failure rate between the NIV trial-like and non-NIV trial-like groups (86% vs. 78%, p = 0.575) but the mortality rate was significantly lower in NIV trial-like group (14% vs. 52%, p = 0.02). Among NIV to HFNC patients, NIV failure was lower in the single switch group compared to the multiple switches group (15% vs. 53%, p = 0.039), with a shorter length of stay (5 [2-8] vs. 12 [8-30] days, p = 0.001). CONCLUSIONS: NIRS combination is used in real life and both switches' strategies, HFNC to NIV and NIV to HFNC, are common in AHRF management. Transitioning from HFNC to NIV is suggested as a therapeutic escalation and in this context performance of a NIV-trial could be beneficial. Conversely, switching from NIV to HFNC is suggested as a de-escalation strategy that is deemed safe if there is no NIRS failure.
Asunto(s)
Ventilación no Invasiva , Insuficiencia Respiratoria , Humanos , Estudios Retrospectivos , Insuficiencia Respiratoria/terapia , Cánula , Respiración ArtificialRESUMEN
PURPOSE: This study aimed to determine the best strategy to achieve fast and safe extubation. METHODS: This multicenter trial randomized patients with primary respiratory failure and low-to-intermediate risk for extubation failure with planned high-flow nasal cannula (HFNC) preventive therapy. It included four groups: (1) conservative screening with ratio of partial pressure of arterial oxygen (PaO2) to fraction of inspired oxygen (FiO2) ≥ 150 and positive end-expiratory pressure (PEEP) ≤ 8 cmH2O plus conservative spontaneous breathing trial (SBT) with pressure support 5 cmH2O + PEEP 0 cmH2O); (2) screening with ratio of partial pressure of arterial oxygen (PaO2) to fraction of inspired oxygen (FiO2) ≥ 150 and PEEP ≤ 8 plus aggressive SBT with pressure support 8 + PEEP 5; (3) aggressive screening with PaO2/FiO2 > 180 and PEEP 10 maintained until the SBT with pressure support 8 + PEEP 5; (4) screening with PaO2/FiO2 > 180 and PEEP 10 maintained until the SBT with pressure support 5 + PEEP 0. Primary outcomes were time-to-extubation and simple weaning rate. Secondary outcomes included reintubation within 7 days after extubation. RESULTS: Randomization to the aggressive-aggressive group was discontinued at the interim analysis for safety reasons. Thus, 884 patients who underwent at least 1 SBT were analyzed (conservative-conservative group, n = 256; conservative-aggressive group, n = 267; aggressive-conservative group, n = 261; aggressive-aggressive, n = 100). Median time to extubation was lower in the groups with aggressive screening (p < 0.001). Simple weaning rates were 45.7%, 76.78% (205 patients), 71.65%, and 91% (p < 0.001), respectively. Reintubation rates did not differ significantly (p = 0.431). CONCLUSION: Among patients at low or intermediate risk for extubation failure with planned HFNC, combining aggressive screening with preventive PEEP and a conservative SBT reduced the time to extubation without increasing the reintubation rate.
Asunto(s)
Extubación Traqueal , Arterias , Humanos , Presión Parcial , Presión , OxígenoRESUMEN
While the incidence of thrombotic complications in critically ill patients is very high, in patients under non-invasive respiratory support (NIS) is still unknown. The specific incidence of thrombotic events in each of the clinical scenarios within the broad spectrum of severity of COVID-19, is not clearly established, and this has not allowed the implementation of thromboprophylaxis or anticoagulation for routine care in COVID-19. Patients admitted in a semi-critical unit treated initially with NIS, especially Continuous-Positive Airway Pressure (CPAP), were included in the study. The cumulative incidence of pulmonary embolism was analyzed and compared between patients with good response to NIS and patients with clinical deterioration that required orotracheal intubation. 93 patients were included and 16% required mechanical ventilation (MV) after the NIS. The crude cumulative incidence of the PE was 14% (95%, CI 8-22) for all group. In patients that required orotracheal intubation and MV, the cumulative incidence was significantly higher [33% (95%, CI 16-58)] compared to patients that continued with non-invasive support [11% (CI 5-18)] (Log-Rank, p = 0.013). Patients that required mechanical ventilation were at higher risk of PE for a HR of 4.3 (95%CI 1.2-16). In conclusion, cumulative incidence of PE is remarkably higher in critically patients with a potential impact in COVID-19 evolution. In this context, patients under NIS are a very high-risk group for developing PE without a clear strategy regarding thromboprophylaxis.
Asunto(s)
COVID-19/complicaciones , COVID-19/terapia , Presión de las Vías Aéreas Positiva Contínua , Ventilación no Invasiva , Embolia Pulmonar/epidemiología , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , EspañaRESUMEN
Objective To explore combined non-invasive-respiratory-support (NIRS) patterns, reasons for NIRS switching, and their potential impact on clinical outcomes in acute-hypoxemic-respiratory-failure (AHRF) patients. Design Retrospective, single-center observational study. Setting Intensive Care Medicine. Patients AHRF patients (cardiac origin and respiratory acidosis excluded) underwent combined NIRS therapies such as non-invasive-ventilation (NIV) and High-Flow-Nasal-Cannula (HFNC). Interventions Patients were classified based on the first NIRS switch performed (HFNC-to-NIV or NIV-to-HFNC), and further specific NIRS switching strategies (NIV trial-like vs. Non-NIV trial-like and single vs. multiples switches) were independently evaluated. Main variables of interest Reasons for switching, NIRS failure and mortality rates. Results A total of 63 patients with AHRF were included, receiving combined NIRS, 58.7% classified in the HFNC-to-NIV group and 41.3% in the NIV-to-HFNC group. Reason for switching from HFNC to NIV was AHRF worsening (100%), while from NIV to HFNC was respiratory improvement (76.9%). NIRS failure rates were higher in the HFNC-to-NIV than in NIV-to-HFNC group (81% vs. 35%, p < 0.001). Among HFNC-to-NIV patients, there was no difference in the failure rate between the NIV trial-like and non-NIV trial-like groups (86% vs. 78%, p = 0.575) but the mortality rate was significantly lower in NIV trial-like group (14% vs. 52%, p = 0.02). Among NIV to HFNC patients, NIV failure was lower in the single switch group compared to the multiple switches group (15% vs. 53%, p = 0.039), with a shorter length of stay (5 [28] vs. 12 [830] days, p = 0.001). Conclusions NIRS combination is used in real life and both switches strategies, HFNC to NIV and NIV to HFNC, are common in AHRF management. Transitioning from HFNC to NIV is suggested as a therapeutic escalation and in this context performance of a NIV-trial could be beneficial. ... (AU)
Objetivo Explorar los patrones combinados de soporte-respiratorio-no-invasivo (SRNI), las razones para cambiar de SRNI y su potencial impacto en los resultados clínicos en pacientes con insuficiencia-respiratoria-aguda-hipoxémica (IRAH). Diseño Estudio observacional retrospectivo unicéntrico. Ámbito Cuidados Intensivos. Pacientes Pacientes con IRAH (excluyendo causa cardíaca y acidosis respiratoria) que recibieron tanto ventilación-no-invasiva (VNI) como cánula-nasal-de-alto-flujo (CNAF). Intervenciones Se categorizó a los pacientes según el primer cambio de SRNI realizado (CNAF-to-VNI o VNI-to-CNAF) y se evaluaron estrategias específicas de SRNI (VNI trial-like vs. Non-VNI trial-like y cambio único vs. múltiples cambios de NIRS) de manera independiente. Variables de interés principales Razones para el cambio, así como las tasas de fracaso de SRNI y la mortalidad. Resultados Un total de 63 pacientes recibieron SRNI combinado, 58,7% clasificados en el grupo CNAF-to-VNI y 41,3% en el grupo VNI-to-CNAF. Los cambios de CNAF a VNI ocurrieron por empeoramiento de la IRHA (100%) y de VNI a CNAF por mejora respiratoria (76.9%). Las tasas de fracaso de SRNI fueron mayores de CNAF a VNI que de VNI a CNAF (81% vs. 35%, p < 0.001). Dentro de los pacientes de CNAF a VNI, no hubo diferencia en las tasas de fracaso entre los grupos VNI trial-like y no-VNI trial-like (86% vs. 78%, p = 0.575), pero la mortalidad fue menor en el grupo VNI trial-like (14% vs. 52%, p = 0.02). Dentro de los pacientes de VNI a CNAF, el fracaso de VNI fue menor en grupo de cambio único vs. múltiple (15% vs. 53%, p = 0.039). Conclusiones Los cambios de estrategia de SRNI son comunes en el manejo clínico diario de la IRHA. El cambio de CNAF a VNI impresiona de ser una escalada terapéutica y en este contexto la realización de un VNI-trial puede ser beneficioso. Al contrario, cambiar de VNI a CNAF impresiona de ser una desescalada terapéutica y parece segura si no hay fracaso ... (AU)