Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 27(16): 3718-3731, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33887083

RESUMEN

Human activity and land use change impact every landscape on Earth, driving declines in many animal species while benefiting others. Species ecological and life history traits may predict success in human-dominated landscapes such that only species with "winning" combinations of traits will persist in disturbed environments. However, this link between species traits and successful coexistence with humans remains obscured by the complexity of anthropogenic disturbances and variability among study systems. We compiled detection data for 24 mammal species from 61 populations across North America to quantify the effects of (1) the direct presence of people and (2) the human footprint (landscape modification) on mammal occurrence and activity levels. Thirty-three percent of mammal species exhibited a net negative response (i.e., reduced occurrence or activity) to increasing human presence and/or footprint across populations, whereas 58% of species were positively associated with increasing disturbance. However, apparent benefits of human presence and footprint tended to decrease or disappear at higher disturbance levels, indicative of thresholds in mammal species' capacity to tolerate disturbance or exploit human-dominated landscapes. Species ecological and life history traits were strong predictors of their responses to human footprint, with increasing footprint favoring smaller, less carnivorous, faster-reproducing species. The positive and negative effects of human presence were distributed more randomly with respect to species trait values, with apparent winners and losers across a range of body sizes and dietary guilds. Differential responses by some species to human presence and human footprint highlight the importance of considering these two forms of human disturbance separately when estimating anthropogenic impacts on wildlife. Our approach provides insights into the complex mechanisms through which human activities shape mammal communities globally, revealing the drivers of the loss of larger predators in human-modified landscapes.


Asunto(s)
Animales Salvajes , Rasgos de la Historia de Vida , Animales , Ecosistema , Actividades Humanas , Humanos , Mamíferos , América del Norte
2.
PeerJ ; 10: e13366, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529483

RESUMEN

Background: Human-induced changes to ecosystems transform the availability of resources to predators, including altering prey populations and increasing access to anthropogenic foods. Opportunistic predators are likely to respond to altered food resources by changing the proportion of food they hunt versus scavenge. These shifts in foraging behavior will affect species interactions through multiple pathways, including by changing other aspects of predator behavior such as boldness, innovation, and social structure. Methods: To understand how foraging behavior impacts predator behavior, we conducted a controlled experiment to simulate hunting by introducing a prey model to captive coyotes (Canis latrans) and compared their behavior to coyotes that continued to scavenge over one year. We used focal observations to construct behavioral budgets, and conducted novel object, puzzle box, and conspecific tests to evaluate boldness, innovation, and response to conspecifics. Results: We documented increased time spent resting by hunting coyotes paired with decreased time spent active. Hunting coyotes increased boldness and persistence but there were no changes in innovation. Our results illustrate how foraging behavior can impact other aspects of behavior, with potential ecological consequences to predator ecology, predator-prey dynamics, and human-wildlife conflict; however, the captive nature of our study limits specific conclusions related to wild predators. We conclude that human-induced behavioral changes could have cascading ecological implications that are not fully understood.


Asunto(s)
Coyotes , Ecosistema , Conducta Predatoria , Animales , Coyotes/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA