Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Cogn Neurosci ; 36(2): 217-224, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38010291

RESUMEN

The ongoing reproducibility crisis in psychology and cognitive neuroscience has sparked increasing calls to re-evaluate and reshape scientific culture and practices. Heeding those calls, we have recently launched the EEGManyPipelines project as a means to assess the robustness of EEG research in naturalistic conditions and experiment with an alternative model of conducting scientific research. One hundred sixty-eight analyst teams, encompassing 396 individual researchers from 37 countries, independently analyzed the same unpublished, representative EEG data set to test the same set of predefined hypotheses and then provided their analysis pipelines and reported outcomes. Here, we lay out how large-scale scientific projects can be set up in a grassroots, community-driven manner without a central organizing laboratory. We explain our recruitment strategy, our guidance for analysts, the eventual outputs of this project, and how it might have a lasting impact on the field.


Asunto(s)
Electroencefalografía , Proyectos de Investigación , Humanos , Reproducibilidad de los Resultados
2.
Neuroimage ; 281: 120356, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703939

RESUMEN

The accurate characterization of cortical functional connectivity from Magnetoencephalography (MEG) data remains a challenging problem due to the subjective nature of the analysis, which requires several decisions at each step of the analysis pipeline, such as the choice of a source estimation algorithm, a connectivity metric and a cortical parcellation, to name but a few. Recent studies have emphasized the importance of selecting the regularization parameter in minimum norm estimates with caution, as variations in its value can result in significant differences in connectivity estimates. In particular, the amount of regularization that is optimal for MEG source estimation can actually be suboptimal for coherence-based MEG connectivity analysis. In this study, we expand upon previous work by examining a broader range of commonly used connectivity metrics, including the imaginary part of coherence, corrected imaginary part of Phase Locking Value, and weighted Phase Lag Index, within a larger and more realistic simulation scenario. Our results show that the best estimate of connectivity is achieved using a regularization parameter that is 1 or 2 orders of magnitude smaller than the one that yields the best source estimation. This remarkable difference may imply that previous work assessing source-space connectivity using minimum-norm may have benefited from using less regularization, as this may have helped reduce false positives. Importantly, we provide the code for MEG data simulation and analysis, offering the research community a valuable open source tool for informed selections of the regularization parameter when using minimum-norm for source space connectivity analyses.

3.
Neuroimage ; 277: 120219, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37307867

RESUMEN

Electrophysiological source imaging (ESI) aims at reconstructing the precise origin of brain activity from measurements of the electric field on the scalp. Across laboratories/research centers/hospitals, ESI is performed with different methods, partly due to the ill-posedness of the underlying mathematical problem. However, it is difficult to find systematic comparisons involving a wide variety of methods. Further, existing comparisons rarely take into account the variability of the results with respect to the input parameters. Finally, comparisons are typically performed using either synthetic data, or in-vivo data where the ground-truth is only roughly known. We use an in-vivo high-density EEG dataset recorded during intracranial single pulse electrical stimulation, in which the true sources are substantially dipolar and their locations are precisely known. We compare ten different ESI methods, using their implementation in the MNE-Python package: MNE, dSPM, LORETA, sLORETA, eLORETA, LCMV beamformers, irMxNE, Gamma Map, SESAME and dipole fitting. We perform comparisons under multiple choices of input parameters, to assess the accuracy of the best reconstruction, as well as the impact of such parameters on the localization performance. Best reconstructions often fall within 1 cm from the true source, with most accurate methods hitting an average localization error of 1.2 cm and outperforming least accurate ones erring by 2.5 cm. As expected, dipolar and sparsity-promoting methods tend to outperform distributed methods. For several distributed methods, the best regularization parameter turned out to be the one in principle associated with low SNR, despite the high SNR of the available dataset. Depth weighting played no role for two out of the six methods implementing it. Sensitivity to input parameters varied widely between methods. While one would expect high variability being associated with low localization error at the best solution, this is not always the case, with some methods producing highly variable results and high localization error, and other methods producing stable results with low localization error. In particular, recent dipolar and sparsity-promoting methods provide significantly better results than older distributed methods. As we repeated the tests with "conventional" (32 channels) and dense (64, 128, 256 channels) EEG recordings, we observed little impact of the number of channels on localization accuracy; however, for distributed methods denser montages provide smaller spatial dispersion. Overall findings confirm that EEG is a reliable technique for localization of point sources and therefore reinforce the importance that ESI may have in the clinical context, especially when applied to identify the surgical target in potential candidates for epilepsy surgery.


Asunto(s)
Electroencefalografía , Epilepsia , Humanos , Electroencefalografía/métodos , Mapeo Encefálico/métodos , Fenómenos Electrofisiológicos , Procesamiento de Señales Asistido por Computador
4.
Neuroimage ; 277: 120253, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37385392

RESUMEN

Machine learning (ML) is increasingly used in cognitive, computational and clinical neuroscience. The reliable and efficient application of ML requires a sound understanding of its subtleties and limitations. Training ML models on datasets with imbalanced classes is a particularly common problem, and it can have severe consequences if not adequately addressed. With the neuroscience ML user in mind, this paper provides a didactic assessment of the class imbalance problem and illustrates its impact through systematic manipulation of data imbalance ratios in (i) simulated data and (ii) brain data recorded with electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). Our results illustrate how the widely-used Accuracy (Acc) metric, which measures the overall proportion of successful predictions, yields misleadingly high performances, as class imbalance increases. Because Acc weights the per-class ratios of correct predictions proportionally to class size, it largely disregards the performance on the minority class. A binary classification model that learns to systematically vote for the majority class will yield an artificially high decoding accuracy that directly reflects the imbalance between the two classes, rather than any genuine generalizable ability to discriminate between them. We show that other evaluation metrics such as the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC), and the less common Balanced Accuracy (BAcc) metric - defined as the arithmetic mean between sensitivity and specificity, provide more reliable performance evaluations for imbalanced data. Our findings also highlight the robustness of Random Forest (RF), and the benefits of using stratified cross-validation and hyperprameter optimization to tackle data imbalance. Critically, for neuroscience ML applications that seek to minimize overall classification error, we recommend the routine use of BAcc, which in the specific case of balanced data is equivalent to using standard Acc, and readily extends to multi-class settings. Importantly, we present a list of recommendations for dealing with imbalanced data, as well as open-source code to allow the neuroscience community to replicate and extend our observations and explore alternative approaches to coping with imbalanced data.


Asunto(s)
Benchmarking , Encéfalo , Humanos , Magnetoencefalografía , Aprendizaje Automático , Electroencefalografía , Algoritmos
5.
Brain Topogr ; 36(1): 10-22, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36460892

RESUMEN

We present a standalone Matlab software platform complete with visualization for the reconstruction of the neural activity in the brain from MEG or EEG data. The underlying inversion combines hierarchical Bayesian models and Krylov subspace iterative least squares solvers. The Bayesian framework of the underlying inversion algorithm allows to account for anatomical information and possible a priori belief about the focality of the reconstruction. The computational efficiency makes the software suitable for the reconstruction of lengthy time series on standard computing equipment. The algorithm requires minimal user provided input parameters, although the user can express the desired focality and accuracy of the solution. The code has been designed so as to favor the parallelization performed automatically by Matlab, according to the resources of the host computer. We demonstrate the flexibility of the platform by reconstructing activity patterns with supports of different sizes from MEG and EEG data. Moreover, we show that the software reconstructs well activity patches located either in the subcortical brain structures or on the cortex. The inverse solver and visualization modules can be used either individually or in combination. We also provide a version of the inverse solver that can be used within Brainstorm toolbox. All the software is available online by Github, including the Brainstorm plugin, with accompanying documentation and test data.


Asunto(s)
Encéfalo , Magnetoencefalografía , Humanos , Teorema de Bayes , Encéfalo/diagnóstico por imagen , Programas Informáticos , Algoritmos , Electroencefalografía
6.
Neuroimage ; 244: 118577, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34525395

RESUMEN

Neural oscillations contribute to speech parsing via cortical tracking of hierarchical linguistic structures, including syllable rate. While the properties of neural entrainment have been largely probed with speech stimuli at either normal or artificially accelerated rates, the important case of natural fast speech has been largely overlooked. Using magnetoencephalography, we found that listening to naturally-produced speech was associated with cortico-acoustic coupling, both at normal (∼6 syllables/s) and fast (∼9 syllables/s) rates, with a corresponding shift in peak entrainment frequency. Interestingly, time-compressed sentences did not yield such coupling, despite being generated at the same rate as the natural fast sentences. Additionally, neural activity in right motor cortex exhibited stronger tuning to natural fast rather than to artificially accelerated speech, and showed evidence for stronger phase-coupling with left temporo-parietal and motor areas. These findings are highly relevant for our understanding of the role played by auditory and motor cortex oscillations in the perception of naturally produced speech.


Asunto(s)
Percepción Auditiva/fisiología , Encéfalo/fisiología , Magnetoencefalografía/métodos , Habla/fisiología , Adolescente , Adulto , Femenino , Humanos , Lenguaje , Masculino , Persona de Mediana Edad , Corteza Motora/fisiología , Adulto Joven
7.
Brain Topogr ; 34(6): 840-862, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34652578

RESUMEN

Meditation practices have been claimed to have a positive effect on the regulation of mood and emotions for quite some time by practitioners, and in recent times there has been a sustained effort to provide a more precise description of the influence of meditation on the human brain. Longitudinal studies have reported morphological changes in cortical thickness and volume in selected brain regions due to meditation practice, which is interpreted as an evidence its effectiveness beyond the subjective self reporting. Using magnetoencephalography (MEG) or electroencephalography to quantify the changes in brain activity during meditation practice represents a challenge, as no clear hypothesis about the spatial or temporal pattern of such changes is available to date. In this article we consider MEG data collected during meditation sessions of experienced Buddhist monks practicing focused attention (Samatha) and open monitoring (Vipassana) meditation, contrasted by resting state with eyes closed. The MEG data are first mapped to time series of brain activity averaged over brain regions corresponding to a standard Destrieux brain atlas. Next, by bootstrapping and spectral analysis, the data are mapped to matrices representing random samples of power spectral densities in [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] frequency bands. We use linear discriminant analysis to demonstrate that the samples corresponding to different meditative or resting states contain enough fingerprints of the brain state to allow a separation between different states, and we identify the brain regions that appear to contribute to the separation. Our findings suggest that the cingulate cortex, insular cortex and some of the internal structures, most notably the accumbens, the caudate and the putamen nuclei, the thalamus and the amygdalae stand out as separating regions, which seems to correlate well with earlier findings based on longitudinal studies.


Asunto(s)
Magnetoencefalografía , Meditación , Encéfalo , Análisis Discriminante , Humanos , Corteza Insular , Factores de Tiempo
8.
Neuroimage ; 219: 117020, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32522662

RESUMEN

Recent years have witnessed a massive push towards reproducible research in neuroscience. Unfortunately, this endeavor is often challenged by the large diversity of tools used, project-specific custom code and the difficulty to track all user-defined parameters. NeuroPycon is an open-source multi-modal brain data analysis toolkit which provides Python-based template pipelines for advanced multi-processing of MEG, EEG, functional and anatomical MRI data, with a focus on connectivity and graph theoretical analyses. Importantly, it provides shareable parameter files to facilitate replication of all analysis steps. NeuroPycon is based on the NiPype framework which facilitates data analyses by wrapping many commonly-used neuroimaging software tools into a common Python environment. In other words, rather than being a brain imaging software with is own implementation of standard algorithms for brain signal processing, NeuroPycon seamlessly integrates existing packages (coded in python, Matlab or other languages) into a unified python framework. Importantly, thanks to the multi-threaded processing and computational efficiency afforded by NiPype, NeuroPycon provides an easy option for fast parallel processing, which critical when handling large sets of multi-dimensional brain data. Moreover, its flexible design allows users to easily configure analysis pipelines by connecting distinct nodes to each other. Each node can be a Python-wrapped module, a user-defined function or a well-established tool (e.g. MNE-Python for MEG analysis, Radatools for graph theoretical metrics, etc.). Last but not least, the ability to use NeuroPycon parameter files to fully describe any pipeline is an important feature for reproducibility, as they can be shared and used for easy replication by others. The current implementation of NeuroPycon contains two complementary packages: The first, called ephypype, includes pipelines for electrophysiology analysis and a command-line interface for on the fly pipeline creation. Current implementations allow for MEG/EEG data import, pre-processing and cleaning by automatic removal of ocular and cardiac artefacts, in addition to sensor or source-level connectivity analyses. The second package, called graphpype, is designed to investigate functional connectivity via a wide range of graph-theoretical metrics, including modular partitions. The present article describes the philosophy, architecture, and functionalities of the toolkit and provides illustrative examples through interactive notebooks. NeuroPycon is available for download via github (https://github.com/neuropycon) and the two principal packages are documented online (https://neuropycon.github.io/ephypype/index.html, and https://neuropycon.github.io/graphpype/index.html). Future developments include fusion of multi-modal data (eg. MEG and fMRI or intracranial EEG and fMRI). We hope that the release of NeuroPycon will attract many users and new contributors, and facilitate the efforts of our community towards open source tool sharing and development, as well as scientific reproducibility.


Asunto(s)
Encéfalo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Neuroimagen/métodos , Programas Informáticos , Algoritmos , Electroencefalografía , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Reproducibilidad de los Resultados
9.
Brain Topogr ; 32(3): 363-393, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30121834

RESUMEN

A recently proposed iterated alternating sequential (IAS) MEG inverse solver algorithm, based on the coupling of a hierarchical Bayesian model with computationally efficient Krylov subspace linear solver, has been shown to perform well for both superficial and deep brain sources. However, a systematic study of its ability to correctly identify active brain regions is still missing. We propose novel statistical protocols to quantify the performance of MEG inverse solvers, focusing in particular on how their accuracy and precision at identifying active brain regions. We use these protocols for a systematic study of the performance of the IAS MEG inverse solver, comparing it with three standard inversion methods, wMNE, dSPM, and sLORETA. To avoid the bias of anecdotal tests towards a particular algorithm, the proposed protocols are Monte Carlo sampling based, generating an ensemble of activity patches in each brain region identified in a given atlas. The performance in correctly identifying the active areas is measured by how much, on average, the reconstructed activity is concentrated in the brain region of the simulated active patch. The analysis is based on Bayes factors, interpreting the estimated current activity as data for testing the hypothesis that the active brain region is correctly identified, versus the hypothesis of any erroneous attribution. The methodology allows the presence of a single or several simultaneous activity regions, without assuming that the number of active regions is known. The testing protocols suggest that the IAS solver performs well with both with cortical and subcortical activity estimation.


Asunto(s)
Algoritmos , Mapeo Encefálico/métodos , Encéfalo/fisiología , Magnetoencefalografía/métodos , Teorema de Bayes , Humanos , Modelos Neurológicos , Método de Montecarlo
10.
Neuroimage ; 156: 29-42, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28479475

RESUMEN

Despite numerous important contributions, the investigation of brain connectivity with magnetoencephalography (MEG) still faces multiple challenges. One critical aspect of source-level connectivity, largely overlooked in the literature, is the putative effect of the choice of the inverse method on the subsequent cortico-cortical coupling analysis. We set out to investigate the impact of three inverse methods on source coherence detection using simulated MEG data. To this end, thousands of randomly located pairs of sources were created. Several parameters were manipulated, including inter- and intra-source correlation strength, source size and spatial configuration. The simulated pairs of sources were then used to generate sensor-level MEG measurements at varying signal-to-noise ratios (SNR). Next, the source level power and coherence maps were calculated using three methods (a) L2-Minimum-Norm Estimate (MNE), (b) Linearly Constrained Minimum Variance (LCMV) beamforming, and (c) Dynamic Imaging of Coherent Sources (DICS) beamforming. The performances of the methods were evaluated using Receiver Operating Characteristic (ROC) curves. The results indicate that beamformers perform better than MNE for coherence reconstructions if the interacting cortical sources consist of point-like sources. On the other hand, MNE provides better connectivity estimation than beamformers, if the interacting sources are simulated as extended cortical patches, where each patch consists of dipoles with identical time series (high intra-patch coherence). However, the performance of the beamformers for interacting patches improves substantially if each patch of active cortex is simulated with only partly coherent time series (partial intra-patch coherence). These results demonstrate that the choice of the inverse method impacts the results of MEG source-space coherence analysis, and that the optimal choice of the inverse solution depends on the spatial and synchronization profile of the interacting cortical sources. The insights revealed here can guide method selection and help improve data interpretation regarding MEG connectivity estimation.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Magnetoencefalografía/métodos , Vías Nerviosas/fisiología , Procesamiento de Señales Asistido por Computador , Algoritmos , Simulación por Computador , Humanos , Modelos Neurológicos
11.
Proc Natl Acad Sci U S A ; 110(40): 15878-85, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24043805

RESUMEN

It is generally accepted that visual perception results from the activation of a feed-forward hierarchy of areas, leading to increasingly complex representations. Here we present evidence for a fundamental role of backward projections to the occipito-temporal region for understanding conceptual object properties. The evidence is based on two studies. In the first study, using high-density EEG, we showed that during the observation of how objects are used there is an early activation of occipital and temporal areas, subsequently reaching the pole of the temporal lobe, and a late reactivation of the visual areas. In the second study, using transcranial magnetic stimulation over the occipital lobe, we showed a clear impairment in the accuracy of recognition of how objects are used during both early activation and, most importantly, late occipital reactivation. These findings represent strong neurophysiological evidence that a top-down mechanism is fundamental for understanding conceptual object properties, and suggest that a similar mechanism might be also present for other higher-order cognitive functions.


Asunto(s)
Cognición/fisiología , Mano/fisiología , Modelos Biológicos , Lóbulo Occipital/fisiología , Lóbulo Temporal/fisiología , Percepción Visual/fisiología , Adulto , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Percepción de Movimiento/fisiología , Estimulación Luminosa , Estimulación Magnética Transcraneal/métodos
12.
Front Pharmacol ; 15: 1321171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469411

RESUMEN

Introduction: Connections among neurons form one of the most amazing and effective network in nature. At higher level, also the functional structures of the brain is organized as a network. It is therefore natural to use modern techniques of network analysis to describe the structures of networks in the brain. Many studies have been conducted in this area, showing that the structure of the neuronal network is complex, with a small-world topology, modularity and the presence of hubs. Other studies have been conducted to investigate the dynamical processes occurring in brain networks, analyzing local and large-scale network dynamics. Recently, network diffusion dynamics have been proposed as a model for the progression of brain degenerative diseases and for traumatic brain injuries. Methods: In this paper, the dynamics of network diffusion is re-examined and reaction-diffusion models on networks is introduced in order to better describe the degenerative dynamics in the brain. Results: Numerical simulations of the dynamics of injuries in the brain connectome are presented. Different choices of reaction term and initial condition provide very different phenomenologies, showing how network propagation models are highly flexible. Discussion: The uniqueness of this research lies in the fact that it is the first time that reaction-diffusion dynamics have been applied to the connectome to model the evolution of neurodegenerative diseases or traumatic brain injury. In addition, the generality of these models allows the introduction of non-constant diffusion and different reaction terms with non-constant parameters, allowing a more precise definition of the pathology to be studied.

13.
Front Hum Neurosci ; 18: 1359753, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545514

RESUMEN

Source localization from M/EEG data is a fundamental step in many analysis pipelines, including those aiming at clinical applications such as the pre-surgical evaluation in epilepsy. Among the many available source localization algorithms, SESAME (SEquential SemiAnalytic Montecarlo Estimator) is a Bayesian method that distinguishes itself for several good reasons: it is highly accurate in localizing focal sources with comparably little sensitivity to input parameters; it allows the quantification of the uncertainty of the reconstructed source(s); it accepts user-defined a priori high- and low-probability search regions in input; it can localize the generators of neural oscillations in the frequency domain. Both a Python and a MATLAB implementation of SESAME are available as open-source packages under the name of SESAMEEG and are well integrated with the main software packages used by the M/EEG community; moreover, the algorithm is part of the commercial software BESA Research (from version 7.0 onwards). While SESAMEEG is arguably simpler to use than other source modeling methods, it has a much richer output that deserves to be described thoroughly. In this article, after a gentle mathematical introduction to the algorithm, we provide a complete description of the available output and show several use cases on experimental M/EEG data.

14.
Front Neurosci ; 18: 1295615, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370436

RESUMEN

Background: The investigation of mindfulness meditation practice, classically divided into focused attention meditation (FAM), and open monitoring meditation (OMM) styles, has seen a long tradition of theoretical, affective, neurophysiological and clinical studies. In particular, the high temporal resolution of magnetoencephalography (MEG) or electroencephalography (EEG) has been exploited to fill the gap between the personal experience of meditation practice and its neural correlates. Mounting evidence, in fact, shows that human brain activity is highly dynamic, transiting between different brain states (microstates). In this study, we aimed at exploring MEG microstates at source-level during FAM, OMM and in the resting state, as well as the complexity and criticality of dynamic transitions between microstates. Methods: Ten right-handed Theravada Buddhist monks with a meditative expertise of minimum 2,265 h participated in the experiment. MEG data were acquired during a randomized block design task (6 min FAM, 6 min OMM, with each meditative block preceded and followed by 3 min resting state). Source reconstruction was performed using eLORETA on individual cortical space, and then parcellated according to the Human Connect Project atlas. Microstate analysis was then applied to parcel level signals in order to derive microstate topographies and indices. In addition, from microstate sequences, the Hurst exponent and the Lempel-Ziv complexity (LZC) were computed. Results: Our results show that the coverage and occurrence of specific microstates are modulated either by being in a meditative state or by performing a specific meditation style. Hurst exponent values in both meditation conditions are reduced with respect to the value observed during rest, LZC shows significant differences between OMM, FAM, and REST, with a progressive increase from REST to FAM to OMM. Discussion: Importantly, we report changes in brain criticality indices during meditation and between meditation styles, in line with a state-like effect of meditation on cognitive performance. In line with previous reports, we suggest that the change in cognitive state experienced in meditation is paralleled by a shift with respect to critical points in brain dynamics.

15.
IBRO Neurosci Rep ; 14: 346-352, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37063608

RESUMEN

Background: Major Depressive Disorder (MDD) is a psychiatric illness that is often associated with potentially life-threatening physiological changes and increased risk for suicidal behavior. Electroencephalography (EEG) research suggests an association between depression and specific frequency imbalances in the frontal brain region. Further, while recently developed technology has been proposed to simplify EEG data acquisition, more research is still needed to support its use in patients with MDD. Methods: Using the 14-channel EMOTIV EPOC cap, we recorded resting state EEG from 15 MDD patients with and MDD persons with suicidal ideation (SI) vs. 12 healthy controls (HC) to investigate putative power spectral density (PSD) between-group differences at the F3 and F4 electrode sites. Specifically, we explored 1) between-group alpha power asymmetries (AA), 2) between-group differences in delta, theta, alpha and beta power, 3) between PSD data and the scores in the Beck's Depression Inventory-II (BDI-II), Beck's Anxiety Inventory (BAI), Reasons for Living Inventory (RFL), and Self-Disgust Questionnaire (SDS). Results: When compared to HC, patients had higher scores on the BAI (p = 0.0018), BDI-II (p = 0.0001) or SDS (p = 0.0142) scale and lower scores in the RFL (p = 0.0006) scale. The PSD analysis revealed no between-group difference or correlation with questionnaire scores for any of the measures considered. Conclusions: The present study could not confirm previous research suggesting frequency-specific anomalies in depressed persons with SI but might suggest that frontal EEG imbalances reflect greater anxiety and negative self-referencing. Future studies should confirm these findings in a larger population sample.

16.
Front Neurosci ; 17: 1261701, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38333603

RESUMEN

Introduction: The formation and functioning of neural networks hinge critically on the balance between structurally homologous areas in the hemispheres. This balance, reflecting their physiological relationship, is fundamental for learning processes. In our study, we explore this functional homology in the resting state, employing a complexity measure that accounts for the temporal patterns in neurodynamics. Methods: We used Normalized Compression Distance (NCD) to assess the similarity over time, neurodynamics, of the somatosensory areas associated with hand perception (S1). This assessment was conducted using magnetoencephalography (MEG) in conjunction with Functional Source Separation (FSS). Our primary hypothesis posited that neurodynamic similarity would be more pronounced within individual subjects than across different individuals. Additionally, we investigated whether this similarity is influenced by hemisphere or age at a population level. Results: Our findings validate the hypothesis, indicating that NCD is a robust tool for capturing balanced functional homology between hemispheric regions. Notably, we observed a higher degree of neurodynamic similarity in the population within the left hemisphere compared to the right. Also, we found that intra-subject functional homology displayed greater variability in older individuals than in younger ones. Discussion: Our approach could be instrumental in investigating chronic neurological conditions marked by imbalances in brain activity, such as depression, addiction, fatigue, and epilepsy. It holds potential for aiding in the development of new therapeutic strategies tailored to these complex conditions, though further research is needed to fully realize this potential.

17.
Brain Sci ; 12(9)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36138915

RESUMEN

This proof-of-concept (PoC) study presents a pipeline made by two blocks: 1. the identification of the network that generates interictal epileptic activity; and 2. the study of the time course of the electrical activity that it generates, called neurodynamics, and the study of its functional connectivity to the other parts of the brain. Network identification is achieved with the Functional Source Separation (FSS) algorithm applied to electroencephalographic (EEG) recordings, the neurodynamics quantified through signal complexity with the Higuchi Fractal Dimension (HFD), and functional connectivity with the Directed Transfer Function (DTF). This PoC is enhanced by the data collected before and after neuromodulation via transcranial Direct Current Stimulation (tDCS, both Real and Sham) in a single drug-resistant epileptic person. We observed that the signal complexity of the epileptogenic network, reduced in the pre-Real, pre-Sham, and post-Sham, reached the level of the rest of the brain post-Real tDCS. DTF changes post-Real tDCS were maintained after one month. The proposed approach can represent a valuable tool to enhance understanding of the relationship between brain neurodynamics characteristics, the effects of non-invasive brain stimulation, and epileptic symptoms.

18.
Front Neural Circuits ; 16: 630621, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35418839

RESUMEN

Schizophrenia has a complex etiology and symptomatology that is difficult to untangle. After decades of research, important advancements toward a central biomarker are still lacking. One of the missing pieces is a better understanding of how non-linear neural dynamics are altered in this patient population. In this study, the resting-state neuromagnetic signals of schizophrenia patients and healthy controls were analyzed in the framework of criticality. When biological systems like the brain are in a state of criticality, they are thought to be functioning at maximum efficiency (e.g., optimal communication and storage of information) and with maximum adaptability to incoming information. Here, we assessed the self-similarity and multifractality of resting-state brain signals recorded with magnetoencephalography in patients with schizophrenia patients and in matched controls. Schizophrenia patients had similar, although attenuated, patterns of self-similarity and multifractality values. Statistical tests showed that patients had higher values of self-similarity than controls in fronto-temporal regions, indicative of more regularity and memory in the signal. In contrast, patients had less multifractality than controls in the parietal and occipital regions, indicative of less diverse singularities and reduced variability in the signal. In addition, supervised machine-learning, based on logistic regression, successfully discriminated the two groups using measures of self-similarity and multifractality as features. Our results provide new insights into the baseline cognitive functioning of schizophrenia patients by identifying key alterations of criticality properties in their resting-state brain data.


Asunto(s)
Magnetoencefalografía , Esquizofrenia , Encéfalo , Mapeo Encefálico , Cognición , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía/métodos
19.
Front Neurosci ; 16: 933391, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36440261

RESUMEN

The neuronal functional connectivity is a complex and non-stationary phenomenon creating dynamic networks synchronization determining the brain states and needed to produce tasks. Here, as a measure that quantifies the synchronization between the neuronal electrical activity of two brain regions, we used the normalized compression distance (NCD), which is the length of the compressed file constituted by the concatenated two signals, normalized by the length of the two compressed files including each single signal. To test the NCD sensitivity to physiological properties, we used NCD to measure the cortico-muscular synchronization, a well-known mechanism to control movements, in 15 healthy volunteers during a weak handgrip. Independently of NCD compressor (Huffman or Lempel Ziv), we found out that the resulting measure is sensitive to the dominant-non dominant asymmetry when novelty management is required (p = 0.011; p = 0.007, respectively) and depends on the level of novelty when moving the non-dominant hand (p = 0.012; p = 0.024). Showing lower synchronization levels for less dexterous networks, NCD seems to be a measure able to enrich the estimate of functional two-node connectivity within the neuronal networks that control the body.

20.
Neuroimage Clin ; 28: 102485, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33395976

RESUMEN

Current theories of schizophrenia emphasize the role of altered information integration as the core dysfunction of this illness. While ample neuroimaging evidence for such accounts comes from investigations of spatial connectivity, understanding temporal disruptions is important to fully capture the essence of dysconnectivity in schizophrenia. Recent electrophysiology studies suggest that long-range temporal correlation (LRTC) in the amplitude dynamics of neural oscillations captures the integrity of transferred information in the healthy brain. Thus, in this study, 25 schizophrenia patients and 25 controls (8 females/group) were recorded during two five-minutes of resting-state magnetoencephalography (once with eyes-open and once with eyes-closed). We used source-level analyses to investigate temporal dysconnectivity in patients by characterizing LRTCs across cortical and sub-cortical brain regions. In addition to standard statistical assessments, we applied a machine learning framework using support vector machine to evaluate the discriminative power of LRTCs in identifying patients from healthy controls. We found that neural oscillations in schizophrenia patients were characterized by reduced signal memory and higher variability across time, as evidenced by cortical and subcortical attenuations of LRTCs in the alpha and beta frequency bands. Support vector machine significantly classified participants using LRTCs in key limbic and paralimbic brain areas, with decoding accuracy reaching 82%. Importantly, these brain regions belong to networks that are highly relevant to the symptomology of schizophrenia. These findings thus posit temporal dysconnectivity as a hallmark of altered information processing in schizophrenia, and help advance our understanding of this pathology.


Asunto(s)
Magnetoencefalografía , Esquizofrenia , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Femenino , Humanos , Aprendizaje Automático , Esquizofrenia/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA