Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 927, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194036

RESUMEN

Ceres is a partially differentiated dwarf planet, as confirmed by NASA's Dawn mission. The Urvara basin (diameter ~170 km) is its third-largest impact feature, enabling insights into the cerean crust. Urvara's geology and mineralogy suggest a potential brine layer at the crust-mantle transition. Here we report new findings that help in understanding the structure and composition of the cerean crust. These results were derived by using the highest-resolution Framing Camera images acquired by Dawn at Ceres. Unexpectedly, we found meter-scale concentrated exposures of bright material (salts) along the crater's upper central ridge, which originate from an enormous depth, possibly from a deep-seated brine or salt reservoir. An extended resurfacing modified the southern floor ~100 Myr after crater formation (~250 Myr), long after the dissipation of the impact-generated heat. In this resurfaced area, one floor scarp shows a granular flow pattern of bright material, showing spectra consistent with the presence of organic material, the first such finding on Ceres beyond the vast Ernutet area. Our results strengthen the hypothesis that Ceres is and has been a geologically active world even in recent epochs, with salts and organic-rich material playing a major role in its evolution.


Asunto(s)
Evolución Planetaria , Sales (Química) , Planeta Tierra , Geología
2.
Nat Commun ; 11(1): 3680, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32778642

RESUMEN

Before acquiring highest-resolution data of Ceres, questions remained about the emplacement mechanism and source of Occator crater's bright faculae. Here we report that brine effusion emplaced the faculae in a brine-limited, impact-induced hydrothermal system. Impact-derived fracturing enabled brines to reach the surface. The central faculae, Cerealia and Pasola Facula, postdate the central pit, and were primarily sourced from an impact-induced melt chamber, with some contribution from a deeper, pre-existing brine reservoir. Vinalia Faculae, in the crater floor, were sourced from the laterally extensive deep reservoir only. Vinalia Faculae are comparatively thinner and display greater ballistic emplacement than the central faculae because the deep reservoir brines took a longer path to the surface and contained more gas than the shallower impact-induced melt chamber brines. Impact-derived fractures providing conduits, and mixing of impact-induced melt with deeper endogenic brines, could also allow oceanic material to reach the surfaces of other large icy bodies.

3.
Science ; 353(6303)2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27701087

RESUMEN

Volcanic edifices are abundant on rocky bodies of the inner solar system. In the cold outer solar system, volcanism can occur on solid bodies with a water-ice shell, but derived cryovolcanic constructs have proved elusive. We report the discovery, using Dawn Framing Camera images, of a landform on dwarf planet Ceres that we argue represents a viscous cryovolcanic dome. Parent material of the cryomagma is a mixture of secondary minerals, including salts and water ice. Absolute model ages from impact craters reveal that extrusion of the dome has occurred recently. Ceres' evolution must have been able to sustain recent interior activity and associated surface expressions. We propose salts with low eutectic temperatures and thermal conductivities as key drivers for Ceres' long-term internal evolution.

4.
Science ; 353(6303)2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27701089

RESUMEN

Thermochemical models have predicted that Ceres, is to some extent, differentiated and should have an icy crust with few or no impact craters. We present observations by the Dawn spacecraft that reveal a heavily cratered surface, a heterogeneous crater distribution, and an apparent absence of large craters. The morphology of some impact craters is consistent with ice in the subsurface, which might have favored relaxation, yet large unrelaxed craters are also present. Numerous craters exhibit polygonal shapes, terraces, flowlike features, slumping, smooth deposits, and bright spots. Crater morphology and simple-to-complex crater transition diameters indicate that the crust of Ceres is neither purely icy nor rocky. By dating a smooth region associated with the Kerwan crater, we determined absolute model ages (AMAs) of 550 million and 720 million years, depending on the applied chronology model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA