Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mov Disord ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132902

RESUMEN

BACKGROUND: Levodopa-induced dyskinesia (LID) is a common adverse effect of levodopa, one of the main therapeutics used to treat the motor symptoms of Parkinson's disease (PD). Previous evidence suggests a connection between LID and a disruption of the dopaminergic system as well as genes implicated in PD, including GBA1 and LRRK2. OBJECTIVES: Our goal was to investigate the effects of genetic variants on risk and time to LID. METHODS: We performed a genome-wide association study (GWAS) and analyses focused on GBA1 and LRRK2 variants. We also calculated polygenic risk scores (PRS) including risk variants for PD and variants in genes involved in the dopaminergic transmission pathway. To test the influence of genetics on LID risk we used logistic regression, and to examine its impact on time to LID we performed Cox regression including 1612 PD patients with and 3175 without LID. RESULTS: We found that GBA1 variants were associated with LID risk (odds ratio [OR] = 1.65; 95% confidence interval [CI], 1.21-2.26; P = 0.0017) and LRRK2 variants with reduced time to LID onset (hazard ratio [HR] = 1.42; 95% CI, 1.09-1.84; P = 0.0098). The fourth quartile of the PD PRS was associated with increased LID risk (ORfourth_quartile = 1.27; 95% CI, 1.03-1.56; P = 0.0210). The third and fourth dopamine pathway PRS quartiles were associated with a reduced time to development of LID (HRthird_quartile = 1.38; 95% CI, 1.07-1.79; P = 0.0128; HRfourth_quartile = 1.38; 95% CI = 1.06-1.78; P = 0.0147). CONCLUSIONS: This study suggests that variants implicated in PD and in the dopaminergic transmission pathway play a role in the risk/time to develop LID. Further studies will be necessary to examine how these findings can inform clinical care. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
Alzheimers Dement ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077866

RESUMEN

INTRODUCTION: Plasma has been proposed as an alternative to cerebrospinal fluid (CSF) for measuring Alzheimer's disease (AD) biomarkers, but no studies have analyzed in detail which biofluid is more informative for genetics studies of AD. METHOD: Eleven proteins associated with AD (α-synuclein, apolipoprotein E [apoE], CLU, GFAP, GRN, NfL, NRGN, SNAP-25, TREM2, VILIP-1, YKL-40) were assessed in plasma (n = 2317) and CSF (n = 3107). Both plasma and CSF genome-wide association study (GWAS) analyses were performed for each protein, followed by functional annotation. Additional characterization for each biomarker included calculation of correlations and predictive power. RESULTS: Eighteen plasma protein quantitative train loci (pQTLs) associated with 10 proteins and 16 CSF pQTLs associated with 9 proteins were identified. Plasma and CSF shared some genetic loci, but protein levels between tissues correlated weakly. CSF protein levels better associated with AD compared to plasma. DISCUSSION: The present results indicate that CSF is more informative than plasma for genetic studies in AD. HIGHLIGHTS: The identification of novel protein quantitative trait loci (pQTLs) in both plasma and cerebrospinal fluid (CSF). Plasma and CSF levels of neurodegeneration-related proteins correlated weakly. CSF is more informative than plasma for genetic studies of Alzheimer's disease (AD). Neurofilament light (NfL), triggering receptor expressed on myeloid cells 2 (TREM2), and chitinase-3-like protein 1 (YKL-40) tend to show relatively strong inter-tissue associations. A novel signal in the apolipoprotein E (APOE) region was identified, which is an eQTL for APOC1.

3.
medRxiv ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38559166

RESUMEN

In Alzheimer's disease (AD), the most common cause of dementia, females have higher prevalence and faster progression, but sex-specific molecular findings in AD are limited. Here, we comprehensively examined and validated 7,006 aptamers targeting 6,162 proteins in cerebral spinal fluid (CSF) from 2,077 amyloid/tau positive cases and controls to identify sex-specific proteomic signatures of AD. In discovery (N=1,766), we identified 330 male-specific and 121 female-specific proteomic alternations in CSF (FDR <0.05). These sex-specific proteins strongly predicted amyloid/tau positivity (AUC=0.98 in males; 0.99 in females), significantly higher than those with age, sex, and APOE-ε4 (AUC=0.85). The identified sex-specific proteins were well validated (r≥0.5) in the Stanford study (N=108) and Emory study (N=148). Biological follow-up of these proteins led to sex differences in cell-type specificity, pathways, interaction networks, and drug targets. Male-specific proteins, enriched in astrocytes and oligodendrocytes, were involved in postsynaptic and axon-genesis. The male network exhibited direct connections among 152 proteins and highlighted PTEN, NOTCH1, FYN, and MAPK8 as hubs. Drug target suggested melatonin (used for sleep-wake cycle regulation), nabumetone (used for pain), daunorubicin, and verteporfin for treating AD males. In contrast, female-specific proteins, enriched in neurons, were involved in phosphoserine residue binding including cytokine activities. The female network exhibits strong connections among 51 proteins and highlighted JUN and 14-3-3 proteins (YWHAG and YWHAZ) as hubs. Drug target suggested biperiden (for muscle control of Parkinson's disease), nimodipine (for cerebral vasospasm), quinostatin and ethaverine for treating AD females. Together, our findings provide mechanistic understanding of sex differences for AD risk and insights into clinically translatable interventions.

4.
Res Sq ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38410465

RESUMEN

Changes in Amyloid-ß (A), hyperphosphorylated Tau (T) in brain and cerebrospinal fluid (CSF) precedes AD symptoms, making CSF proteome a potential avenue to understand the pathophysiology and facilitate reliable diagnostics and therapies. Using the AT framework and a three-stage study design (discovery, replication, and meta-analysis), we identified 2,173 proteins dysregulated in AD, that were further validated in a third totally independent cohort. Machine learning was implemented to create and validate highly accurate and replicable (AUC>0.90) models that predict AD biomarker positivity and clinical status. These models can also identify people that will convert to AD and those AD cases with faster progression. The associated proteins cluster in four different protein pseudo-trajectories groups spanning the AD continuum and were enrichment in specific pathways including neuronal death, apoptosis and tau phosphorylation (early stages), microglia dysregulation and endolysosomal dysfuncton(mid-stages), brain plasticity and longevity (mid-stages) and late microglia-neuron crosstalk (late stages).

5.
Brain Pathol ; 34(4): e13250, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38418081

RESUMEN

Previous studies have suggested a relationship between the number of CAG triplet repeats in the HTT gene and neurodegenerative diseases not related to Huntington's disease (HD). This study seeks to investigate whether the number of CAG repeats of HTT is associated with the risk of developing certain tauopathies and its influence as a modulator of the clinical and neuropathological phenotype. Additionally, it aims to evaluate the potential of polyglutamine staining as a neuropathological screening. We genotyped the HTT gene CAG repeat number and APOE-ℰ isoforms in a cohort of patients with neuropathological diagnoses of tauopathies (n=588), including 34 corticobasal degeneration (CBD), 98 progressive supranuclear palsy (PSP) and 456 Alzheimer's disease (AD). Furthermore, we genotyped a control group of 1070 patients, of whom 44 were neuropathologic controls. We identified significant differences in the number of patients with pathological HTT expansions in the CBD group (2.7%) and PSP group (3.2%) compared to control subjects (0.2%). A significant increase in the size of the HTT CAG repeats was found in the AD compared to the control group, influenced by the presence of the Apoliprotein E (APOE)-ℰ4 isoform. Post-mortem assessments uncovered tauopathy pathology with positive polyglutamine aggregates, with a slight predominance in the neostriatum for PSP and CBD cases and somewhat greater limbic involvement in the AD case. Our results indicated a link between HTT CAG repeat expansion with other non-HD pathology, suggesting they could share common neurodegenerative pathways. These findings support that genetic or histological screening for HTT repeat expansions should be considered in tauopathies.


Asunto(s)
Proteína Huntingtina , Tauopatías , Humanos , Masculino , Femenino , Anciano , Tauopatías/genética , Tauopatías/patología , Persona de Mediana Edad , Proteína Huntingtina/genética , Anciano de 80 o más Años , Parálisis Supranuclear Progresiva/genética , Parálisis Supranuclear Progresiva/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Repeticiones de Trinucleótidos/genética , Encéfalo/patología , Expansión de Repetición de Trinucleótido/genética , Genotipo , Degeneración Corticobasal/genética , Degeneración Corticobasal/patología , Péptidos
6.
Mol Neurodegener ; 19(1): 1, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172904

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) plays a critical role in microglial activation, survival, and apoptosis, as well as in Alzheimer's disease (AD) pathogenesis. We previously reported the MS4A locus as a key modulator for soluble TREM2 (sTREM2) in cerebrospinal fluid (CSF). To identify additional novel genetic modifiers of sTREM2, we performed the largest genome-wide association study (GWAS) and identified four loci for CSF sTREM2 in 3,350 individuals of European ancestry. Through multi-ethnic fine mapping, we identified two independent missense variants (p.M178V in MS4A4A and p.A112T in MS4A6A) that drive the association in MS4A locus and showed an epistatic effect for sTREM2 levels and AD risk. The novel TREM2 locus on chr 6 contains two rare missense variants (rs75932628 p.R47H, P=7.16×10-19; rs142232675 p.D87N, P=2.71×10-10) associated with sTREM2 and AD risk. The third novel locus in the TGFBR2 and RBMS3 gene region (rs73823326, P=3.86×10-9) included a regulatory variant with a microglia-specific chromatin loop for the promoter of TGFBR2. Using cell-based assays we demonstrate that overexpression and knock-down of TGFBR2, but not RBMS3, leads to significant changes of sTREM2. The last novel locus is located on the APOE region (rs11666329, P=2.52×10-8), but we demonstrated that this signal was independent of APOE genotype. This signal colocalized with cis-eQTL of NECTIN2 in the brain cortex and cis-pQTL of NECTIN2 in CSF. Overexpression of NECTIN2 led to an increase of sTREM2 supporting the genetic findings. To our knowledge, this is the largest study to date aimed at identifying genetic modifiers of CSF sTREM2. This study provided novel insights into the MS4A and TREM2 loci, two well-known AD risk genes, and identified TGFBR2 and NECTIN2 as additional modulators involved in TREM2 biology.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Estudio de Asociación del Genoma Completo , Microglía/patología , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquídeo , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética
7.
medRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38260583

RESUMEN

Background: To date, there is no high throughput proteomic study in the context of Autosomal Dominant Alzheimer's disease (ADAD). Here, we aimed to characterize early CSF proteome changes in ADAD and leverage them as potential biomarkers for disease monitoring and therapeutic strategies. Methods: We utilized Somascan® 7K assay to quantify protein levels in the CSF from 291 mutation carriers (MCs) and 185 non-carriers (NCs). We employed a multi-layer regression model to identify proteins with different pseudo-trajectories between MCs and NCs. We replicated the results using publicly available ADAD datasets as well as proteomic data from sporadic Alzheimer's disease (sAD). To biologically contextualize the results, we performed network and pathway enrichment analyses. Machine learning was applied to create and validate predictive models. Findings: We identified 125 proteins with significantly different pseudo-trajectories between MCs and NCs. Twelve proteins showed changes even before the traditional AD biomarkers (Aß42, tau, ptau). These 125 proteins belong to three different modules that are associated with age at onset: 1) early stage module associated with stress response, glutamate metabolism, and mitochondria damage; 2) the middle stage module, enriched in neuronal death and apoptosis; and 3) the presymptomatic stage module was characterized by changes in microglia, and cell-to-cell communication processes, indicating an attempt of rebuilding and establishing new connections to maintain functionality. Machine learning identified a subset of nine proteins that can differentiate MCs from NCs better than traditional AD biomarkers (AUC>0.89). Interpretation: Our findings comprehensively described early proteomic changes associated with ADAD and captured specific biological processes that happen in the early phases of the disease, fifteen to five years before clinical onset. We identified a small subset of proteins with the potentials to become therapy-monitoring biomarkers of ADAD MCs. Funding: Proteomic data generation was supported by NIH: RF1AG044546.

8.
NPJ Parkinsons Dis ; 10(1): 72, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553467

RESUMEN

Bi-allelic pathogenic variants in PRKN are the most common cause of autosomal recessive Parkinson's disease (PD). 647 patients with PRKN-PD were included in this international study. The pathogenic variants present were characterised and investigated for their effect on phenotype. Clinical features and progression of PRKN-PD was also assessed. Among 133 variants in index cases (n = 582), there were 58 (43.6%) structural variants, 34 (25.6%) missense, 20 (15%) frameshift, 10 splice site (7.5%%), 9 (6.8%) nonsense and 2 (1.5%) indels. The most frequent variant overall was an exon 3 deletion (n = 145, 12.3%), followed by the p.R275W substitution (n = 117, 10%). Exon3, RING0 protein domain and the ubiquitin-like protein domain were mutational hotspots with 31%, 35.4% and 31.7% of index cases presenting mutations in these regions respectively. The presence of a frameshift or structural variant was associated with a 3.4 ± 1.6 years or a 4.7 ± 1.6 years earlier age at onset of PRKN-PD respectively (p < 0.05). Furthermore, variants located in the N-terminus of the protein, a region enriched with frameshift variants, were associated with an earlier age at onset. The phenotype of PRKN-PD was characterised by slow motor progression, preserved cognition, an excellent motor response to levodopa therapy and later development of motor complications compared to early-onset PD. Non-motor symptoms were however common in PRKN-PD. Our findings on the relationship between the type of variant in PRKN and the phenotype of the disease may have implications for both genetic counselling and the design of precision clinical trials.

9.
medRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464214

RESUMEN

Importance: The chromosome 17q21.31 region, containing a 900 Kb inversion that defines H1 and H2 haplotypes, represents the strongest genetic risk locus in progressive supranuclear palsy (PSP). In addition to H1 and H2, various structural forms of 17q21.31, characterized by the copy number of α, ß, and γ duplications, have been identified. However, the specific effect of each structural form on the risk of PSP has never been evaluated in a large cohort study. Objective: To assess the association of different structural forms of 17q.21.31, defined by the copy numbers of α, ß, and γ duplications, with the risk of PSP and MAPT sub-haplotypes. Design setting and participants: Utilizing whole genome sequencing data of 1,684 (1,386 autopsy confirmed) individuals with PSP and 2,392 control subjects, a case-control study was conducted to investigate the association of copy numbers of α, ß, and γ duplications and structural forms of 17q21.31 with the risk of PSP. All study subjects were selected from the Alzheimer's Disease Sequencing Project (ADSP) Umbrella NG00067.v7. Data were analyzed between March 2022 and November 2023. Main outcomes and measures: The main outcomes were the risk (odds ratios [ORs]) for PSP with 95% CIs. Risks for PSP were evaluated by logistic regression models. Results: The copy numbers of α and ß were associated with the risk of PSP only due to their correlation with H1 and H2, while the copy number of γ was independently associated with the increased risk of PSP. Each additional duplication of γ was associated with 1.10 (95% CI, 1.04-1.17; P = 0.0018) fold of increased risk of PSP when conditioning H1 and H2. For the H1 haplotype, addition γ duplications displayed a higher odds ratio for PSP: the odds ratio increases from 1.21 (95%CI 1.10-1.33, P = 5.47 × 10-5) for H1ß1γ1 to 1.29 (95%CI 1.16-1.43, P = 1.35 × 10-6) for H1ß1γ2, 1.45 (95%CI 1.27-1.65, P = 3.94 × 10-8) for H1ß1γ3, and 1.57 (95%CI 1.10-2.26, P = 1.35 × 10-2) for H1ß1γ4. Moreover, H1ß1γ3 is in linkage disequilibrium with H1c (R2 = 0.31), a widely recognized MAPT sub-haplotype associated with increased risk of PSP. The proportion of MAPT sub-haplotypes associated with increased risk of PSP (i.e., H1c, H1d, H1g, H1o, and H1h) increased from 34% in H1ß1γ1 to 77% in H1ß1γ4. Conclusions and relevance: This study revealed that the copy number of γ was associated with the risk of PSP independently from H1 and H2. The H1 haplotype with more γ duplications showed a higher odds ratio for PSP and were associated with MAPT sub-haplotypes with increased risk of PSP. These findings expand our understanding of how the complex structure at 17q21.31 affect the risk of PSP.

10.
Mol Neurodegener ; 19(1): 61, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152475

RESUMEN

BACKGROUND: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). METHOD: In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. RESULTS: Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73 × 10-3) in PSP. CONCLUSIONS: Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Parálisis Supranuclear Progresiva , Secuenciación Completa del Genoma , Humanos , Parálisis Supranuclear Progresiva/genética , Predisposición Genética a la Enfermedad/genética , Masculino , Femenino , Anciano , Polimorfismo de Nucleótido Simple/genética , Persona de Mediana Edad , Anciano de 80 o más Años
11.
medRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38234807

RESUMEN

Background: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). Method: In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. Results: Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73×10-3) in PSP. Conclusions: Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.

12.
Rev. neurol. (Ed. impr.) ; 72(1): 1-8, 1 ene., 2021. tab, graf
Artículo en Español | IBECS (España) | ID: ibc-200034

RESUMEN

INTRODUCCIÓN: El tratamiento de la enfermedad de Parkinson (EP) es complejo y la instauración de terapias de segunda línea en la EP avanzada sigue siendo controvertida. OBJETIVO: Analizar la asistencia de pacientes con EP en Cataluña, con especial atención a la utilización de las terapias de segunda línea en la EP avanzada. Sujetos y métodos: Encuesta en línea autoadministrada a través de la Societat Catalana de Neurología a neurólogos de Cataluña que atendían a pacientes con EP. RESULTADOS: Participaron 72 neurólogos que visitaban una media mensual de 38 pacientes con EP (el 37,3% con complicaciones motoras). El 86% preguntaba rutinariamente por complicaciones motoras. Los principales motivos para indicar terapias de segunda línea fueron la discapacidad en off (83,1%), el impacto de las discinesias (76,9%), el impacto del tiempo en off (75,4%) y el tiempo en off (73,8%). El 70% de los neurólogos declaró limitaciones para instaurar terapias de segunda línea: escasez de recursos en su hospital, falta de tiempo para visitar al paciente o para realizar tareas administrativas y falta de soporte de enfermería (33,3%). No se utilizan terapias de segunda línea en el 72% de los pacientes que podrían ser potencialmente candidatos, sobre todo por rechazo del paciente (37,9%). CONCLUSIONES: La mayoría de los neurólogos en Cataluña que visitan pacientes con EP pregunta rutinariamente por complicaciones motoras sin utilizar herramientas específicas. Aunque los neurólogos conocen bien las indicaciones de instauración de terapias de segunda línea, la negativa del paciente, la falta de tiempo y la falta de protocolos asistenciales definidos para derivar a pacientes pueden contribuir a una menor utilización de terapias de segunda línea en la EP avanzada


INTRODUCTION: The treatment of Parkinson's disease (PD) is complex, and the establishment of second-line therapies in advanced PD remains controversial. AIM: To analyze the assistance of patients with PD in Catalonia, with special attention to the use of second-line therapies in advanced PD. SUBJECTS AND METHODS: Online self-administered survey to neurologists in Catalonia who treated patients with PD, through the Catalan Society of Neurology. RESULTS: 72 neurologists who visited a monthly average of 38 PD patients (37.3% motor complications) participated. 86% routinely asked about motor. The main reasons for indicating second-line therapies were disability in off (83.1%), impact of dyskinesias (76.9%), impact of time in off (75.4%) and time in off (73.8%). 70% of neurologists declared limitations to establish second-line therapies: lack of resources in their hospital, lack of time to visit the patient or to perform administrative tasks and lack nursing support. Second-line therapies is not used in 72% of patients who could potentially be candidates, especially due to patient rejection (37.9%). CONCLUSIONS: The majority of neurologists in Catalonia who visit patients with PD routinely ask about motor complications without using specific tools. Although neurologists are well aware of the indications for the establishment of second-line therapies, the refusal of the patient, the lack of time and the lack of defined care protocols to refer patients, they can contribute to a lower use of second-line therapies in advanced PD


Asunto(s)
Humanos , Neurólogos/estadística & datos numéricos , Pautas de la Práctica en Medicina/estadística & datos numéricos , Enfermedad de Parkinson/terapia , Encuestas y Cuestionarios , Estimulación Encefálica Profunda/estadística & datos numéricos , Levodopa/administración & dosificación , Antiparkinsonianos/administración & dosificación , España
13.
Med. clín (Ed. impr.) ; 116(16): 601-604, mayo 2001.
Artículo en Es | IBECS (España) | ID: ibc-3130

RESUMEN

FUNDAMENTO: Diversos estudios han constatado que entre el 13 y el 33 por ciento de los pacientes con enfermedad de Parkinson (EP) presentan antecedentes familiares de la enfermedad. Los objetivos de este trabajo fueron identificar casos de EP familiar y analizar la existencia de rasgos distintivos entre los casos esporádicos y familiares. PACIENTES Y MÉTODO: Se evaluó prospectivamente a 402 pacientes con EP controlados en el Hospital Clínic i Universitari de Barcelona. Se realizó un examen clínico a 169 pacientes utilizando diversas escalas. La EP se subclasificó como predominantemente tremorígena, rígida o mixta en función de los síntomas que predominaban. RESULTADOS: La frecuencia de EP familiar fue del 13 por ciento. La edad de inicio no fue diferente en los casos familiares y esporádicos, pero fue significativamente mayor en las mujeres (57,4 [13] años) que en los varones (54,8 [11,4] años) (p < 0,05). La forma tremorígena de EP fue más frecuente en los casos familiares (35,5 por ciento; p < 0,05). En los casos de EP familiar, la edad de inicio fue menor en los hijos (53 [13] años) que en los padres (68 [7,8] años) (p = 0,001). CONCLUSIONES: Los factores genéticos pueden desempeñar un papel importante en el desarrollo de la EP, y pueden existir factores ligados al sexo que modulen la edad de inicio de la enfermedad. Los casos familiares sólo se diferencian de los esporádicos en una mayor frecuencia de las formas predominantemente tremorígenas. La menor edad de inicio en los hijos que en los padres apunta a la existencia de un fenómeno de anticipación genética en la EP familiar (AU)


Asunto(s)
Persona de Mediana Edad , Adulto , Anciano , Anciano de 80 o más Años , Masculino , Femenino , Humanos , Temblor , Linaje , Enfermedad de Parkinson , Estudios Prospectivos , Brazo , Electromiografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA