Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-37398439

RESUMEN

Objective or purpose: Physiological changes in retinal ganglion cells (RGCs) have been reported in rodent models of photoreceptor (PR) loss but this has not been investigated in primates. By expressing both a calcium indicator (GCaMP6s) and an optogenetic actuator (ChrimsonR) in foveal RGCs of the macaque, we reactivated RGCs in vivo and assessed their response in the weeks and years following PR loss. Design: We used an in vivo calcium imaging approach to record optogenetically evoked activity in deafferented RGCs in primate fovea. Cellular scale recordings were made longitudinally over a 10 week period following photoreceptor ablation and compared to responses from RGCs that had lost photoreceptor input more than two years prior. Participants: Three eyes received photoreceptor ablation, OD of a male Macaca mulatta (M1), OS of a female Macaca fascicularis (M2) and OD of a male Macaca fascicularis (M3). Two animals were used for in vivo recording, one for histological assessment. Methods: Cones were ablated with an ultrafast laser delivered through an adaptive optics scanning light ophthalmoscope (AOSLO). A 0.5 s pulse of 25Hz 660nm light optogenetically stimulated RGCs, and the resulting GCaMP fluorescence signal was recorded using AOSLO. Measurements were repeated over 10 weeks immediately after PR ablation, at 2.3 years and in control RGCs. Main Outcome measures: The calcium rise time, decay constant and sensitivity index of optogenetic mediated RGC were derived from GCaMP fluorescence recordings from 221 RGCs (Animal M1) and 218 RGCs (Animal M2) in vivo. Results: Following photoreceptor ablation, the mean decay constant of the calcium response in RGCs decreased 1.5 fold (1.6±0.5 s to 0.6±0.3 s SD) over the 10 week observation period in subject 1 and 2.1 fold (2.5±0.5 s to 1.2±0.2 s SD) within 8 weeks in subject 2. Calcium rise time and sensitivity index were stable. Optogenetic reactivation remained possible 2.3 years after PR ablation. Conclusions: Altered calcium dynamics developed in primate foveal RGCs in the weeks after photoreceptor ablation. The mean decay constant of optogenetic mediated calcium responses decreased 1.5 - 2-fold. This is the first report of this phenomenon in primate retina and further work is required to understand the role these changes play in cell survival and activity.

2.
Ophthalmol Sci ; 4(5): 100520, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881601

RESUMEN

Purpose: Physiological changes in retinal ganglion cells (RGCs) have been reported in rodent models of photoreceptor (PR) loss, but this has not been investigated in primates. By expressing both a calcium indicator (GCaMP6s) and an optogenetic actuator (ChrimsonR) in foveal RGCs of the macaque, we reactivated RGCs in vivo and assessed their response in the weeks and years after PR loss. Design: We used an in vivo calcium imaging approach to record optogenetically evoked activity in deafferented RGCs in primate fovea. Cellular scale recordings were made longitudinally over a 10-week period after PR ablation and compared with responses from RGCs that had lost PR input >2 years prior. Participants: Three eyes received PR ablation, the right eye of a male Macaca mulatta (M1), the left eye of a female Macaca fascicularis (M2), and the right eye of a male Macaca fascicularis (M3). Two animals were used for in vivo recording, 1 for histological assessment. Methods: Cones were ablated with an ultrafast laser delivered through an adaptive optics scanning light ophthalmoscope (AOSLO). A 0.5 second pulse of 25 Hz 660 nm light optogenetically stimulated RGCs, and the resulting GCaMP fluorescence signal was recorded using an AOSLO. Measurements were repeated over 10 weeks immediately after PR ablation, at 2.3 years and in control RGCs. Main Outcome Measures: The calcium rise time, decay constant, and sensitivity index of optogenetic-mediated RGC were derived from GCaMP fluorescence recordings from 221 RGCs (animal M1) and 218 RGCs (animal M2) in vivo. Results: After PR ablation, the mean decay constant of the calcium response in RGCs decreased 1.5-fold (standard deviation 1.6 ± 0.5 seconds to 0.6 ± 0.3 seconds) over the 10-week observation period in subject 1 and 2.1-fold (standard deviation 2.5 ± 0.5 seconds to 1.2 ± 0.2 seconds) within 8 weeks in subject 2. Calcium rise time and sensitivity index were stable. Optogenetic reactivation remained possible 2.3 years after PR ablation. Conclusions: Altered calcium dynamics developed in primate foveal RGCs in the weeks after PR ablation. The mean decay constant of optogenetic-mediated calcium responses decreased 1.5- to twofold. This is the first report of this phenomenon in primate retina and further work is required to understand the role these changes play in cell survival and activity. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

3.
Elife ; 122023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36745553

RESUMEN

During development, retinal progenitors navigate a complex landscape of fate decisions to generate the major cell classes necessary for proper vision. Transcriptional regulation is critical to generate diversity within these major cell classes. Here, we aim to provide the resources and techniques required to identify transcription factors necessary to generate and maintain diversity in photoreceptor subtypes, which are critical for vision. First, we generate a key resource: a high-quality and deep transcriptomic profile of each photoreceptor subtype in adult zebrafish. We make this resource openly accessible, easy to explore, and have integrated it with other currently available photoreceptor transcriptomic datasets. Second, using our transcriptomic profiles, we derive an in-depth map of expression of transcription factors in photoreceptors. Third, we use efficient CRISPR-Cas9 based mutagenesis to screen for null phenotypes in F0 larvae (F0 screening) as a fast, efficient, and versatile technique to assess the involvement of candidate transcription factors in the generation of photoreceptor subtypes. We first show that known phenotypes can be easily replicated using this method: loss of S cones in foxq2 mutants and loss of rods in nr2e3 mutants. We then identify novel functions for the transcription factor Tbx2, demonstrating that it plays distinct roles in controlling the generation of all photoreceptor subtypes within the retina. Our study provides a roadmap to discover additional factors involved in this process. Additionally, we explore four transcription factors of unknown function (Skor1a, Sall1a, Lrrfip1a, and Xbp1), and find no evidence for their involvement in the generation of photoreceptor subtypes. This dataset and screening method will be a valuable way to explore the genes involved in many other essential aspects of photoreceptor biology.


Asunto(s)
Factores de Transcripción , Pez Cebra , Animales , Factores de Transcripción/metabolismo , Pez Cebra/genética , Diferenciación Celular/genética , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA