Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Biotechnol ; 44(2): 255-274, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36658718

RESUMEN

As the demand for tea (Camellia sinensis) has grown across the world, the amount of biomass waste that has been produced during the harvesting process has also increased. Tea consumption was estimated at about 6.3 million tonnes in 2020 and is anticipated to reach 7.4 million tonnes by 2025. The generation of tea waste (TW) after use has also increased concurrently with rising tea consumption. TW includes clipped stems, wasted tea leaves, and buds. Many TW-derived products have proven benefits in various applications, including energy generation, energy storage, wastewater treatment, and pharmaceuticals. TW is widely used in environmental and energy-related applications. Energy recovery from low- and medium-calorific value fuels may be accomplished in a highly efficient manner using pyrolysis, anaerobic digestion, and gasification. TW-made biochar and activated carbon are also promising adsorbents for use in environmental applications. Another area where TW shows promise is in the synthesis of phytochemicals. This review offers an overview of the conversion procedures for TW into value-added products. Further, the improvements in their applications for energy generation, energy storage, removal of different contaminants, and extraction of phytochemicals have been reviewed. A comprehensive assessment of the sustainable use of TWs as environmentally acceptable renewable resources is compiled in this review.


Asunto(s)
, Residuos
2.
Crit Rev Biotechnol ; 44(7): 1367-1385, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38163946

RESUMEN

Spent grains are one of the lignocellulosic biomasses available in abundance, discarded by breweries as waste. The brewing process generates around 25-30% of waste in different forms and spent grains alone account for 80-85% of that waste, resulting in a significant global waste volume. Despite containing essential nutrients, i.e., carbohydrates, fibers, proteins, fatty acids, lipids, minerals, and vitamins, efficient and economically viable valorization of these grains is lacking. Microbial fermentation enables the valorization of spent grain biomass into numerous commercially valuable products used in energy, food, healthcare, and biomaterials. However, the process still needs more investigation to overcome challenges, such as transportation, cost-effective pretreatment, and fermentation strategy. to lower the product cost and to achieve market feasibility and customer affordability. This review summarizes the potential of spent grains valorization via microbial fermentation and associated challenges.


Asunto(s)
Grano Comestible , Fermentación , Grano Comestible/microbiología , Cerveza/microbiología , Biomasa , Residuos Industriales
3.
Environ Res ; 263(Pt 1): 120011, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284486

RESUMEN

Microalgae-assisted bioremediation, enriched by nanomaterial integration, offers a sustainable approach to environmental pollution mitigation while harnessing microalgae's potential as a biocatalyst and biorefinery resource. This strategy explores the interaction between microalgae, nanomaterials, and bioremediation, advancing sustainability objectives. The potent combination of microalgae and nanomaterials highlights the biorefinery's promise in effective pollutant removal and valuable algal byproduct production. Various nanomaterials, including metallic nanoparticles and semiconductor quantum dots, are reviewed for their roles in inorganic and organic pollutant removal and enhancement of microalgae growth. Limited studies have been conducted to establish nanomaterial's (CeO2, ZnO, Fe3O4, Al2O3, etc.) role on microalgae in pollution remediation; most studies cover inorganic pollutants (heavy metals and nutrients) remediation, exhibited 50-300% bioremediation efficiency improvement; however, some studies cover antibiotics and toxic dyes removal efficiency with 19-95% improvement. These aspects unveil the complex mechanisms underlying nanomaterial-pollutant-microalgae interactions, focusing on adsorption, photocatalysis, and quantum dot properties. Strategies to enhance bioremediation efficiency are discussed, including pollutant uptake improvement, real-time control, tailored nanomaterial design, and nutrient recovery. The review assesses recent advancements, navigates challenges, and envisions a sustainable future for bioremediation, underlining the transformative capacity of nanomaterial-driven microalgae-assisted bioremediation. This work aligns with Sustainable Development Goals 6 (Clean Water and Sanitation) and 12 (Responsible Consumption and Production) by exploring nanomaterial-enhanced microalgae bioremediation for sustainable pollution management and resource utilization.

4.
J Food Sci Technol ; 61(5): 847-860, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38487279

RESUMEN

Polyunsaturated fatty acids (PUFAs) found in microalgae, primarily omega-3 (ω-3) and omega-6 (ω-6) are essential nutrients with positive effects on diseases such as hyperlipidemia, atherosclerosis, and coronary risk. Researchers still seek improvement in PUFA yield at a large scale for better commercial prospects. This review summarizes advancements in microalgae PUFA research for their cost-effective production and potential applications. Moreover, it discusses the most promising cultivation modes using organic and inorganic sources. It also discusses biomass hydrolysates to increase PUFA production as an alternative and sustainable organic source. For cost-effective PUFA production, heterotrophic, mixotrophic, and photoheterotrophic cultivation modes are assessed with traditional photoautotrophic production modes. Also, mixotrophic cultivation has fascinating sustainable attributes over other trophic modes. Furthermore, it provides insight into growth phase (stage I) improvement strategies to accumulate biomass and the complementing effects of other stress-inducing strategies during the production phase (stage II) on PUFA enhancement under these cultivation modes. The role of an excessive or limiting range of salinity, nutrients, carbon source, and light intensity were the most effective parameter in stage II for accumulating higher PUFAs such as ω-3 and ω-6. This article outlines the commercial potential of microalgae for omega PUFA production. They reduce the risk of diabetes, cardiovascular diseases (CVDs), cancer, and hypertension and play an important role in their emerging role in healthy lifestyle management.

5.
J Food Sci Technol ; 61(4): 631-641, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38410271

RESUMEN

Prolonged and excessive use of chlorpyrifos (CPS) has caused severe pollution, particularly in crops, vegetables, fruits, and water sources. As a result, CPS is detected in various food and water samples using conventional methods. However, its applications are limited due to size, portability, cost, etc. In this regard, electrochemical sensors are preferred for CPS detection due to their high sensitivity, reliability, rapid, on-site detection, and user-friendly. Notably, graphene-based electrochemical sensors have gained more attention due to their unique physiochemical and electrochemical properties. It shows high sensitivity, selectivity, and quick response because of its high surface area and high conductivity. In this review, we have discussed an overview of three graphene-based different functional electrochemical sensors such as electroanalytical sensors, bio-electrochemical sensors, and photoelectrochemical sensors used to detect CPS in food and water samples. Furthermore, the fabrication and operation of these electrochemical sensors using various materials (low band gap material, nanomaterials, enzymes, antibodies, DNA, aptamers, and so on) and electrochemical techniques (CV, DPV, EIS, SWV etc.) are discussed. The study found that the electrical signal was reduced with increasing CPS concentration. This is due to the blocking of active sites, reduced redox reaction, impedance, irreversible reactions, etc. In addition, acetylcholinesterase-coupled sensors are more sensitive and stable than others. Also, it can be further improved by fabricating with low band gap nanomaterials. Despite their advantages, these sensors have significant drawbacks, such as low reusability, repeatability, stability, and high cost. Therefore, further research is required to overcome such limitations.

6.
J Food Sci Technol ; 61(7): 1283-1294, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38910925

RESUMEN

In the current study, ten lactic acid bacteria (LAB) isolates exhibiting anti-α-glucosidase activity were isolated from fermented food. It is directed at novel supplementary diets to prevent/improve diet-induced carbohydrate metabolism disorders and related chronic diseases. Moreover, to evaluate their safety, functionality, and probiotic potential via in vitro simulated test conditions. From 16s-rRNA sequencing, Pediococcus acidilactici (NKUST 803, 845, 858), Lactobacillus plantarum (NKUST 817, 828, 851), Levilactobacillus brevis (NKUST 816, 855) and Lactobacillus acidophilus (NKUST 803, 863) were identified. The results showed that the isolates possessed anti-pathogenic activity, auto-aggregation ability, hydrophobicity (47.44-96.4%), and gastric acid-resistant activity (79-99.1%), which proved their potential for probiotics in nutraceuticals to render hypoglycemic activity or antidiabetic effects to the host positively. Among tested isolates, L. plantarum 817 and P. acidilactici 858 exhibited maximum α-glucosidase inhibitory (AGI) activity of 35-40%. The heat map clearly showed that L. plantarum 817 exhibited the best AGI activity and probiotic potential, among others. These were studied under various simulated gut conditions and safety tests. However, all isolates possess the potential to be used as probiotics in commercial-scale health applications. Pediococcus sp. possesses notable AGI activity but relatively less colonization potential in the gut hence recommended daily intake for positive health effects.

7.
J Food Sci Technol ; 61(8): 1609-1619, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38966797

RESUMEN

The interest in algae-derived bioactive compounds has grown due to their potential therapeutic efficacy against a range of diseases. These compounds, derived from proteins, exhibit diverse functions and profound pharmacological effects. Recent research has highlighted the extensive health benefits of algae-derived bioactive compounds, positioning them as potential natural antioxidants in the food, pharmaceutical, and cosmetic industries. This study focuses on extracting proteins from Porphyra yezoensis using innovative physical pre-treatment methods such as stirring, ball milling, and homogenization, under various acidic and alkaline conditions. Enzymatic hydrolysis, employing commercial enzymes at optimal temperature, pH, and enzyme-substrate ratios, produced distinct fractions according to molecular weight. Pepsin demonstrated the highest hydrolysis rate, with the fraction above 10 kDa identified as the most bioactive hydrolysate. Antioxidant activity was evaluated through DPPH, ABTS, ferrous ion chelation, and reducing power assays, demonstrating high antioxidant potential and the ability to mitigate oxidative stress. The 10 kDa fraction of pepsin hydrolysate exhibited 82.6% DPPH activity, 77.5% ABTS activity, 88.4% ferrous ion chelation activity, and higher reducing power potential (0.84 absorbance at 700 nm). Further exploration of mechanisms, amino acid profiles, and potential in vivo benefits is essential to fully exploit the medicinal potential of these algae-derived hydrolysates.

8.
J Food Sci Technol ; 61(8): 1481-1491, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38966793

RESUMEN

Bioactive polysaccharides and oligosaccharides were successfully extracted from three distinct seaweeds: Sargassum sp., Graciallaria sp., and Ulva sp. utilizing various extraction techniques. The obtained polysaccharides and oligosaccharides were subjected to comprehensive characterization, and their potential antioxidant properties were assessed using a Hep G2 cell model. Analysis via FTIR spectroscopy unveiled the presence of sulfate groups in the polysaccharides and oligosaccharides derived from Sargassum sp. The antioxidant capabilities were assessed through various assays (DPPH, ABTS, Fe-ion chelation, and reducing power), revealing that SAR-OSC exhibited superior antioxidant activity than others. This was attributed to its higher phenolic content (24.6 µg/mg), FRAP value (36 µM Vitamin C/g of extract), and relatively low molecular weight (5.17 kDa). The study also investigated the protective effects of these polysaccharides and oligosaccharides against oxidative stress-induced damage in Hep G2 cells by measuring ROS production and intracellular antioxidant enzyme expressions (SOD, GPx, and CAT). Remarkably, SAR-OSC demonstrated the highest efficacy in protecting Hep G2 cells reducing ROS production and downregulating SOD, GPx, and CAT expressions. Current findings have confirmed that the oligosaccharides extracted by the chemical method show higher antioxidant activity, particularly SAR-OSC, and robust protective abilities in the Hep G2 cells.

9.
Environ Res ; 216(Pt 2): 114400, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36265604

RESUMEN

Biowaste, produced from nature, is preferred to be a good source of carbon and ligninolytic machinery for many microorganisms. They are complex biopolymers composed of lignin, cellulose, and hemicellulose traces. This biomass can be depolymerized to its nano-dimensions to gain exceptional properties useful in the field of cosmetics, pharmaceuticals, high-strength materials, etc. Nano-sized biomass derivatives overcome the inherent drawbacks of the parent material and offer promises as a potential material for a wide range of applications with their unique traits such as low-toxicity, biocompatibility, biodegradability and environmentally friendly nature with versatility. This review focuses on the production of value-added products feasible from nanocellulose, nano lignin, and xylan nanoparticles which is quite a novel study of its kind. Dawn of nanotechnology has converted bio waste by-products (hemicellulose and lignin) into useful precursors for many commercial products. Nano-cellulose has been employed in the fields of electronics, cosmetics, drug delivery, scaffolds, fillers, packaging, and engineering structures. Xylan nanoparticles and nano lignin have numerous applications as stabilizers, additives, textiles, adhesives, emulsifiers, and prodrugs for many polyphenols with an encapsulation efficiency of 50%. This study will support the potential development of composites for emerging applications in all aspects of interest and open up novel paths for multifunctional biomaterials in nano-dimensions for cosmetic, drug carrier, and clinical applications.


Asunto(s)
Lignina , Xilanos , Lignina/química , Celulosa/química , Biomasa
10.
J Food Sci Technol ; 60(3): 1054-1064, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908337

RESUMEN

Bacterial cellulose (BC) has attracted worldwide attention owing to its tremendous properties and versatile applications. BC has huge market demand, however; its production is still limited hence important to explore the economically and technically feasible bioprocess for its improved production. The current study is based on improving the bioprocess for BC production employing Komagataeibacter europeaus 14148. Physico-chemical parameters have been optimized e.g., initial pH, incubation temperature, incubation period, inoculum size, and carbon source for maximum BC production. The study employed crude and/or a defined carbon source in the production medium. Hestrin and Schramm (HS) medium was used for BC production with initial pH 5.5 at 30 °C after 7 days of incubation under static conditions. The yield of BC obtained from fruit juice extracted from orange, papaya, mango and banana were higher than other sugars employed. The maximum BC yield of 3.48 ± 0.16 g/L was obtained with papaya extract having 40 g/L reducing sugar concentration and 3.47 ± 0.05 g/L BC was obtained with orange extract having 40 g/L reducing sugar equivalent in the medium. BC yield was about three-fold higher than standard HS medium. Fruit extracts can be employed as sustainable and economic substrates for BC production to replace glucose and fructose. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05451-y.

11.
J Food Sci Technol ; 60(3): 966-974, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908336

RESUMEN

Pidan, a pickled duck egg, is a traditional Chinese cuisine and generally produced by soaking in metal ion containing strong alkaline solution such as NaOH solution. However, nowadays consumers possess negative perception for using strong alkali in food processing. Therefore, the objective of the current study was to determine the potential of incinerated eggshell powder and alkaline electrolyzed oxidized (EO) water for pidan production rather than harmful NaOH use. This study aims to obtain the optimal physicochemical and sensory qualities of pidan. Various dosing (1-5%) of the incinerated eggshell powder solution or alkaline EO water was used as a basic pickling solution. Duck eggs were pickled at 25-27 °C for 15-30 days with 3 days of an observation interval. Actual commercial process commonly undergoes for 14 days of ripening, after 25 days of picking process with incinerated eggshell powder or EO water. Results showed that physicochemical and sensory attributes of pidan obtained by incinerated eggshell powder solution and alkaline EO water were not significantly different (P < 0.05) from the commercial product. This study reports a cost-effective and green alternative method for pidan processing by replacing costly NaOH without compromising their physico-chemical and sensory attributes.

12.
J Food Sci Technol ; 60(3): 1015-1025, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908355

RESUMEN

Resveratrol butyrate esters (RBEs), which are novel resveratrol-synthesized derivatives, exhibit increased biological activity. This study elucidated the effect of RBEs on fat metabolism and their anti-obesity characteristics. Their molecular mechanism was investigated in the 3T3-L1 murine preadipocyte cells and adipocytes. RBE doses of < 2 µM did not induce a significant change in the viability of 3T3-L1 adipocytes. After RBEs treatment, intracellular lipid droplet accumulation in 3T3-L1 adipocytes was stimulated by methylisobutylxanthine, dexamethasone, and insulin-containing medium. However, a significant dose-dependent reduction in intracellular lipid levels was observed. The mRNA levels of two adipogenic transcription factors (peroxisome proliferator-activated receptor [PPAR] and CCAAT/enhancer-binding proteins [C/EBP]) and lipogenic proteins (fatty acid-binding protein 4 [FABP4] and fatty acid synthase [FAS]) were significantly attenuated by RBE treatment in both MDI-stimulated and differentiated 3T3-L1 adipocytes. Moreover, the phosphorylation level of adenosine monophosphate-activated protein kinase (AMPK) also dramatically increased in the MDI + RBE-treated group compared to that in the MDI + vehicle-treated group. Collectively, our study provides strong evidence that RBEs inhibit adipogenesis by regulating adipogenic protein expression and increasing the p-AMPK/AMPK ratio. Future studies will be conducted on animal models to validate the application of RBEs as a functional food ingredient in improving human health. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05436-x.

13.
J Food Sci Technol ; 60(12): 2955-2967, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37786601

RESUMEN

Heterotrophic fast-growing thraustochytrids have been identified as promising candidates for the bioconversion of organic sources into industrially important valuable products. Marine thraustochytrids exhibit remarkable potential for high-value polyunsaturated fatty acids (PUFAs) production however their potential is recently discovered for high-value carotenoids and terpenoids which also have a role as a dietary supplement and health promotion. Primarily, omega-3 and 6 PUFAs (DHA, EPA, and ARA) from thraustochytrids are emerging sources of nutrient supplements for vegetarians replacing animal sources and active pharmaceutical ingredients due to excellent bioactivities. Additionally, thraustochytrids produce reasonable amounts of squalene (terpenoid) and carotenoids which are also high-value products with great market potential. Hence, these can be coextracted as a byproduct with PUFAs under the biorefinery concept. There is still quite a few printed information on bioprocess conditions for decent (co)-production of squalene and carotenoid from selective protists such as lutein, astaxanthin, canthaxanthin, and lycopene. The current review seeks to provide a concise overview of the coproduction and application of PUFAs, carotenoids, and terpenoids from oleaginous thraustochytrids and their application to human health.

14.
J Food Sci Technol ; 60(3): 1045-1053, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908344

RESUMEN

Old preserved radish (OPR), a traditional pickled-food of Asia, contains the healthy bioactive compounds, such as phenols and flavonoids. To preserve the phenols levels in radish by thermal treatment, which are decreased due to the polyphenol oxidase activity during long storage. Range of thermal processing evaluated to retain the maximum phenols level in the radish while processed at temperatures of 70 °C, 80 °C and 90 °C for 30 days. In this study, the bioactive compounds and antioxidant activity of thermal processing radish (TPR) were evaluated and compared with commercial products of OPR. Results showed the best condition of thermal processing, 80°C for 30 days, could increase the values of phenols, flavonoids and antioxidant activity that were 2.27, 2.74 and 2.89 times, respectively. When comparing the thermally processed radish or TPR with OPR, TPR has a higher content of phenols and flavonoids, indicating that the thermal processing was effective to increase the content of functional compounds in radish and significantly improved its nutritional values.

15.
J Food Sci Technol ; 60(3): 1006-1014, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908362

RESUMEN

Pacific saury is a primarily wild-caught fish in Taiwan and contains high amounts of polyunsaturated fatty acids (PUFAs). Therefore, its consumption is encouraged by Taiwanese government due to its high nutrition values and affordable price. In this study, four products, Minced saury with pork, Minced saury with XO sauce, Crispy dried saury, and Saury roll with roe, were developed. Optimization of the processing and ingredients were determined by a group of expert panelists, then by a large group of regular consumers. Total bacterial count, coliform, Escherichia coli, volatile base nitrogen, water content, and water activity were analyzed for shelf-life stability. In addition, the indexes of oil oxidation such as acid values, peroxide, and thiobarbituric acid were determined for the oil quality of products. Compositions of fatty acids and fragrant compounds were also analyzed. All microbial, physicochemical, and oil oxidation indexes of the products complied with the official regulations and industrial standards of Taiwan. Composition of fragrant compounds closely related with sensory characteristics and PUFAs composition were not degraded by the processing and storage. A new brand name, Hsiung-Chou, and the logo were established and the products were contracted to manufacturers for commercial production. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05432-1.

16.
J Food Sci Technol ; 60(7): 1992-2000, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37206414

RESUMEN

Identifying the risk of ochratoxin A in our daily food has become fundamental because of its toxicity. In this work, we report a novel semi-automated in-syringe-based fast mycotoxin extraction (IS-FaMEx) technique coupled with direct-injection electrospray-ionization tandem mass spectrometer (ESI-MS/MS) detection for the quantification of ochratoxin A in coffee and tea samples. Under the optimized conditions, the results reveal that the developed method's linearity was more remarkable, with a correlation coefficient of > 0.999 and > 92% extraction recovery with a precision of 6%. The detection and quantification limits for ochratoxin A were 0.2 and 0.8 ng g-1 for the developed method, respectively, which is lower than the European Union regulatory limit of toxicity for ochratoxin-A (5 ng g-1) in coffee. Furthermore, the newly developed modified IS-FaMEx-ESI-MS/MS exhibited lower signal suppression of 8% with a good green metric score of 0.64. In addition, the IS-FaMEx-ESI-MS/MS showed good extraction recovery, matrix elimination, good detection, and quantification limits with high accuracy and precision due to the fewer extraction steps with semi-automation. Therefore, the presented method can be applied as a potential methodology for the detection of mycotoxins in food products for food safety and quality control purposes. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05733-z.

17.
Mar Drugs ; 20(6)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35736167

RESUMEN

Alginate is a hydrocolloid from algae, specifically brown algae, which is a group that includes many of the seaweeds, like kelps and an extracellular polymer of some bacteria. Sodium alginate is one of the best-known members of the hydrogel group. The hydrogel is a water-swollen and cross-linked polymeric network produced by the simple reaction of one or more monomers. It has a linear (unbranched) structure based on d-mannuronic and l-guluronic acids. The placement of these monomers depending on the source of its production is alternating, sequential and random. The same arrangement of monomers can affect the physical and chemical properties of this polysaccharide. This polyuronide has a wide range of applications in various industries including the food industry, medicine, tissue engineering, wastewater treatment, the pharmaceutical industry and fuel. It is generally recognized as safe when used in accordance with good manufacturing or feeding practice. This review discusses its application in addition to its structural, physical, and chemical properties.


Asunto(s)
Alginatos , Phaeophyceae , Alginatos/química , Bacterias , Ácidos Hexurónicos/química , Hidrogeles , Polímeros , Polisacáridos
18.
Microb Cell Fact ; 20(1): 112, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090444

RESUMEN

Macro- and microalgae-based foods are becoming popular due to their high nutritious value. The algal biomass is enriched with polysaccharides, protein, polyunsaturated fatty acids, carotenoids, vitamins and minerals. However, the most promising fraction is polysaccharides (PS) or their derivatives (as dietary fibers) which are not entirely fermented by colonic bacteria hence act as potential prebiotic. Primarily, algae become famous as prominent protein sources. Recently, these are widely adopted as functional food (e.g., desserts, dairy products, oil-derivatives, pastas etc.) or animal feed (for poultry, cattle, fish etc.). Besides prebiotic and balanced amino acids source, algae derived compounds implied as therapeutics due to comprising bioactive properties to elicit immunomodulatory, antioxidative, anticancerous, anticoagulant, hepato-protective, and antihypertensive responses. Despite the above potentials, broader research determinations are inevitable to explore these algal compounds until microalgae become a business reality for broader and specific applications in all health domains. However, scale up of algal bioprocess remains a major challenge until commercial affordability is accomplished which can be possible by discovering their hidden potentials and increasing their value and application prospects. This review provides an overview of the significance of algae consumption for several health benefits in humans and animals mainly as prebiotics, however their functional food and animal feed potential are briefly covered. Moreover, their potential to develop an algal-based food industry to meet the people's requirements not only as a sustainable food solution with several health benefits but also as therapeutics is inevitable.


Asunto(s)
Microalgas/química , Fitoquímicos/farmacología , Prebióticos , Algas Marinas/química , Alimentación Animal , Animales , Fibras de la Dieta , Industria de Alimentos , Alimentos Funcionales , Tracto Gastrointestinal/efectos de los fármacos , Humanos , Polisacáridos
19.
Trends Biotechnol ; 42(10): 1273-1287, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38582658

RESUMEN

This review emphasizes the urgent need for food waste upcycling as a response to the mounting global food waste crisis. Focusing on polyhydroxyalkanoates (PHAs) as an alternative to traditional plastics, it examines the potential of various food wastes as feedstock for microbial fermentation and PHA production. The upcycling of food waste including cheese whey, waste cooking oil, coffee waste, and animal fat is an innovative practice for food waste management. This approach not only mitigates environmental impacts but also contributes to sustainable development and economic growth. Downstream processing techniques for PHAs are discussed, highlighting their role in obtaining high-quality materials. The study also addresses sustainability considerations, emphasizing biodegradability and recycling, while acknowledging the challenges associated with this path.


Asunto(s)
Polihidroxialcanoatos , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/metabolismo , Fermentación , Administración de Residuos/métodos , Alimentos , Residuos , Biodegradación Ambiental , Reciclaje/métodos , Alimento Perdido y Desperdiciado
20.
Bioresour Technol ; 401: 130749, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679239

RESUMEN

Microalgae are promising sources of valuable compounds: carotenoids, polyunsaturated fatty acids, lipids, etc. To overcome the feasibility challenge due to low yield and attain commercial potential, researchers merge technologies to enhance algal bioprocess. In this context, nanomaterials are attractive for enhancing microalgal bioprocessing, from cultivation to downstream extraction. Nanomaterials enhance biomass and product yields (mainly lipid and carotenoids) through improved nutrient uptake and stress tolerance during cultivation. They also provide mechanistic insights from recent studies. They also revolutionize harvesting via nano-induced sedimentation, flocculation, and flotation. Downstream processing benefits from nanomaterials, improving extraction and purification. Special attention is given to cost-effective extraction, showcasing nanomaterial integration, and providing a comparative account. The review also profiles nanomaterial types, including metallic nanoparticles, magnetic nanomaterials, carbon-based nanomaterials, silica nanoparticles, polymers, and functionalized nanomaterials. Challenges and future trends are discussed, emphasizing nanomaterials' role in advancing sustainable and efficient microalgal bioprocessing, unlocking their potential for bio-based industries.


Asunto(s)
Microalgas , Microalgas/metabolismo , Biomasa , Biotecnología/métodos , Nanoestructuras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA