Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Kidney Int ; 105(2): 312-327, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37977366

RESUMEN

Acute kidney injury (AKI) is a common condition that lacks effective treatments. In part, this shortcoming is due to an incomplete understanding of the genetic mechanisms that control pathogenesis and recovery. Identifying the molecular and genetic regulators unique to nephron segments that dictate vulnerability to injury and regenerative potential could lead to new therapeutic targets to treat ischemic kidney injury. Pax2 and Pax8 are homologous transcription factors with overlapping functions that are critical for kidney development and are re-activated in AKI. Here, we examined the role of Pax2 and Pax8 in recovery from ischemic AKI and found them upregulated after severe AKI and correlated with chronic injury. Surprisingly, proximal-tubule-selective deletion of Pax2 and Pax8 resulted in a less severe chronic injury phenotype. This effect was mediated by protection against the acute insult, similar to pre-conditioning. Prior to injury, Pax2 and Pax8 mutant mice develop a unique subpopulation of proximal tubule cells in the S3 segment that displayed features usually seen only in acute or chronic injury. The expression signature of these cells was strongly enriched with genes associated with other mechanisms of protection against ischemic AKI including caloric restriction, hypoxic pre-conditioning, and female sex. Thus, our results identified a novel role for Pax2 and Pax8 in mature proximal tubules that regulates critical genes and pathways involved in both the injury response and protection from ischemic AKI.


Asunto(s)
Lesión Renal Aguda , Túbulos Renales Proximales , Factor de Transcripción PAX2 , Factor de Transcripción PAX8 , Insuficiencia Renal Crónica , Animales , Femenino , Ratones , Lesión Renal Aguda/complicaciones , Lesión Renal Aguda/genética , Isquemia/complicaciones , Túbulos Renales Proximales/patología , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/genética , Daño por Reperfusión/genética , Factor de Transcripción PAX8/genética , Factor de Transcripción PAX8/metabolismo , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo
2.
Am J Physiol Renal Physiol ; 320(3): F404-F417, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522413

RESUMEN

Renal arginine vasopressin receptor 2 (AVPR2) plays a crucial role in osmoregulation. Engagement of ligand with AVPR2 results in aquaporin 2 movement to the apical membrane and water reabsorption from the urinary filtrate. Despite this essential role, little is known about transcriptional regulation of Avpr2. Here, we identify novel roles for PAX2, a transcription factor crucial for kidney development, and its adaptor protein, Pax transcription interacting protein (PTIP), for epigenetic regulation of Avpr2 and thus body water balance. Chromatin immunoprecipitation (ChIP) from murine inner medulla cells (IMCD-3) identified the minimal DNA-binding region of PAX2 on the Avpr2 promoter. Regulation of Avpr2 by PAX2 was confirmed using a heterologous DNA expression system. PAX2 recruits the adaptor protein PTIP and its associated histone methyltransferase (HMT) complex to Avpr2 promoter, imposing epigenetic marks on this region and throughout the coding sequence that modulate Avpr2 gene transcription. Reduction of PAX2 or PTIP protein levels by siRNA prevented histone lysine methylation and expression of Avpr2. ChIP using mouse or human kidneys determined that PAX2 is highly enriched in the AVPR2 promoter alongside PTIP and HMT proteins, leading to high levels of histone H3 lysine trimethylation within the promoter and throughout the gene. In conclusion, PAX2 provides locus specificity for PTIP, allowing the HMT complex to impart epigenetic changes at the Avpr2 locus and regulate Avpr2 transcription. These finding have major implications for understanding regulation of body water balance.NEW & NOTEWORTHY The transcription factor PAX2 plays an indispensable role in kidney development. In the adult kidney, we identified the first described protein this protein regulates. PAX2 and its interacting partner Pax transcription interacting protein recruit a histone methyltransferase complex to the promoter and epigentically regulate the expression of arginine vasopressin receptor 2, a protein that plays a crucial role in osmoregulation in the distal tubule.


Asunto(s)
Proteínas Portadoras/metabolismo , Epigénesis Genética/fisiología , Factor de Transcripción PAX2/metabolismo , Receptores de Vasopresinas/metabolismo , Animales , Núcleo Celular/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas Nucleares/metabolismo
3.
J Am Soc Nephrol ; 31(6): 1212-1225, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32381599

RESUMEN

BACKGROUND: As the glomerular filtrate passes through the nephron and into the renal medulla, electrolytes, water, and urea are reabsorbed through the concerted actions of solute carrier channels and aquaporins at various positions along the nephron and in the outer and inner medulla. Proliferating stem cells expressing the nuclear transcription factor Pax2 give rise to renal epithelial cells. Pax2 expression ends once the epithelial cells differentiate into mature proximal and distal tubules, whereas expression of the related Pax8 protein continues. The collecting tubules and renal medulla are derived from Pax2-positive ureteric bud epithelia that continue to express Pax2 and Pax8 in adult kidneys. Despite the crucial role of Pax2 in renal development, functions for Pax2 or Pax8 in adult renal epithelia have not been established. METHODS: To examine the roles of Pax2 and Pax8 in the adult mouse kidney, we deleted either Pax2, Pax8, or both genes in adult mice and examined the resulting phenotypes and changes in gene expression patterns. We also explored the mechanism of Pax8-mediated activation of potential target genes in inner medullary collecting duct cells. RESULTS: Mice with induced deletions of both Pax2 and Pax8 exhibit severe polyuria that can be attributed to significant changes in the expression of solute carriers, such as the urea transporters encoded by Slc14a2, as well as aquaporins within the inner and outer medulla. Furthermore, Pax8 expression is induced by high-salt levels in collecting duct cells and activates the Slc14a2 gene by recruiting a histone methyltransferase complex to the promoter. CONCLUSIONS: These data reveal novel functions for Pax proteins in adult renal epithelia that are essential for retaining water and concentrating urine.


Asunto(s)
Acuaporinas/fisiología , Capacidad de Concentración Renal/fisiología , Riñón/fisiología , Proteínas de Transporte de Membrana/fisiología , Factor de Transcripción PAX2/fisiología , Factor de Transcripción PAX8/fisiología , Animales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Osmorregulación , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX8/genética , Transportadores de Urea
4.
Mol Cell ; 45(2): 185-95, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22169276

RESUMEN

The repression of transcription, through the concerted actions of tissue specific DNA binding proteins, Polycomb repressor complexes, and DNA methylation, is essential for maintaining stem cell pluripotency and for cell fate specification in development. In this report, we show that recruitment of the co-repressor protein Grg4 to a Pax DNA-binding site displaces the adaptor protein PTIP and a histone H3K4me complex. Grg4 recruits the arginine methyltransferase PRMT5 to chromatin resulting in symmetric H4R3 dimethylation. PRMT5 is essential for recruiting Polycomb proteins, in a Pax2/Grg4 dependent manner, which results in H3K27 methylation. These data define the early epigenetic events in response to Pax/Grg mediated gene repression and demonstrate that a single DNA binding protein can recruit either an activator or a repressor complex depending on the availability of Grg4. These data suggest a model for understanding the initiation of Groucho/Grg/TLE mediated gene silencing.


Asunto(s)
Epigénesis Genética , Histonas/metabolismo , Proteínas Nucleares/fisiología , Proteínas Represoras/fisiología , Proteínas Portadoras/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN , Silenciador del Gen , Células HEK293 , Humanos , Metilación , Modelos Genéticos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas del Grupo Polycomb , Proteína Metiltransferasas/metabolismo , Proteína Metiltransferasas/fisiología , Transporte de Proteínas , Proteína-Arginina N-Metiltransferasas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
5.
J Am Soc Nephrol ; 27(9): 2702-19, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26825532

RESUMEN

The mechanisms by which the glomerular filtration barrier prevents the loss of large macromolecules and simultaneously, maintains the filter remain poorly understood. Recent studies proposed that podocytes have an active role in both the endocytosis of filtered macromolecules and the maintenance of the filtration barrier. Deletion of a key endosomal trafficking regulator, the class 3 phosphatidylinositol (PtdIns) 3-kinase vacuolar protein sorting 34 (Vps34), in podocytes results in aberrant endosomal membrane morphology and podocyte dysfunction. We recently showed that the vacuolation phenotype in cultured Vps34-deficient podocytes is caused by the absence of a substrate for the Vps34 downstream effector PtdIns 3-phosphate 5-kinase (PIKfyve), which phosphorylates Vps34-generated PtdIns(3)P to produce PtdIns (3,5)P2. PIKfyve perturbation and PtdIns(3,5)P2 reduction result in massive membrane vacuolation along the endosomal system, but the cell-specific functions of PIKfyve in vivo remain unclear. We show here that the genetic deletion of PIKfyve in endocytically active proximal tubular cells resulted in the development of large cytoplasmic vacuoles caused by arrested endocytic traffic progression at a late-endosome stage. In contrast, deletion of PIKfyve in glomerular podocytes did not significantly alter the endosomal morphology, even in age 18-month-old mice. However, on culturing, the PIKfyve-deleted podocytes developed massive cytoplasmic vacuoles. In summary, these data suggest that glomerular podocytes and proximal tubules have different requirements for PIKfyve function, likely related to distinct in vivo needs for endocytic flux.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III/fisiología , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/enzimología , Fosfatidilinositol 3-Quinasas/fisiología , Podocitos/enzimología , Animales , Endosomas , Glomérulos Renales , Ratones , Fosfatidilinositol 3-Quinasas/genética
6.
J Biol Chem ; 290(11): 7185-94, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25631048

RESUMEN

Pax genes encode developmental regulatory proteins that specify cell lineages and tissues in metazoans. Upon binding to DNA through the conserved paired domain, Pax proteins can recruit both activating and repressing complexes that imprint distinct patterns of histone methylation associated with either gene activation or silencing. How the switch from Pax-mediated activation to repression is regulated remains poorly understood. In this report, we identify the phosphatase PPM1B as an essential component of the Groucho4 repressor complex that is recruited by Pax2 to chromatin. PPM1B can dephosphorylate the Pax2 activation domain and displace the adaptor protein PTIP, thus inhibiting H3K4 methylation and gene activation. Loss of PPM1B prevents Groucho-mediated gene repression. Thus, PPM1B helps switch Pax2 from a transcriptional activator to a repressor protein. This can have profound implications for developmental regulation by Pax proteins and suggests a model for imprinting specific epigenetic marks depending on the availability of co-factors.


Asunto(s)
Proteínas Portadoras/metabolismo , Silenciador del Gen , Proteínas Nucleares/metabolismo , Factor de Transcripción PAX2/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Represoras/metabolismo , Activación Transcripcional , Proteínas Portadoras/análisis , Cromatina/metabolismo , Proteínas de Unión al ADN , Células HEK293 , Humanos , Proteínas Nucleares/análisis , Factor de Transcripción PAX2/análisis , Fosfoproteínas Fosfatasas/análisis , Mapas de Interacción de Proteínas , Proteína Fosfatasa 2C , Proteínas Represoras/análisis
7.
Development ; 139(3): 488-97, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22190634

RESUMEN

Notch signaling is known to regulate the proliferation and differentiation of intestinal stem and progenitor cells; however, direct cellular targets and specific functions of Notch signals had not been identified. We show here in mice that Notch directly targets the crypt base columnar (CBC) cell to maintain stem cell activity. Notch inhibition induced rapid CBC cell loss, with reduced proliferation, apoptotic cell death and reduced efficiency of organoid initiation. Furthermore, expression of the CBC stem cell-specific marker Olfm4 was directly dependent on Notch signaling, with transcription activated through RBP-Jκ binding sites in the promoter. Notch inhibition also led to precocious differentiation of epithelial progenitors into secretory cell types, including large numbers of cells that expressed both Paneth and goblet cell markers. Analysis of Notch function in Atoh1-deficient intestine demonstrated that the cellular changes were dependent on Atoh1, whereas Notch regulation of Olfm4 gene expression was Atoh1 independent. Our findings suggest that Notch targets distinct progenitor cell populations to maintain adult intestinal stem cells and to regulate cell fate choice to control epithelial cell homeostasis.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Regulación de la Expresión Génica , Intestino Delgado/citología , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Animales , Apoptosis/efectos de los fármacos , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Caliciformes/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Técnicas de Cultivo de Órganos , Células de Paneth/metabolismo , Regiones Promotoras Genéticas , Receptor Notch1/antagonistas & inhibidores , Receptor Notch2/antagonistas & inhibidores , Transducción de Señal , Células Madre/citología , Células Madre/fisiología
8.
Pediatr Nephrol ; 29(4): 589-95, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23996452

RESUMEN

During embryonic development, DNA binding proteins help specify and restrict the fates of pluripotent stem cells. In the developing kidney, Pax2 proteins are among the earliest markers for the renal epithelial cell lineage, with expression in the mesenchyme and in proliferating epithelia. The Pax2 protein is essential for interpreting inductive signals emanating from the ureteric bud such that the kidney mesenchyme can convert to epithelia. The biochemistry of Pax protein function is being studied in a variety of model systems. Through interactions with the adaptor Pax transactivation-domain interacting protein (PTIP), Pax proteins can recruit members of the Trithorax family of histone methyltransferases to imprint activating epigenetic marks on chromatin. However, interactions with the corepressor Groucho-related gene-4 (Grg4) protein can inhibit activation and instead recruit Polycomb repressor complexes to promote target-gene silencing. We present a model whereby the regulated interactions of Pax proteins with available cofactor-mediated activation or gene silencing at different stages of development. The implications for establishing and maintaining the epigenome are discussed.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Riñón/embriología , Factores de Transcripción Paired Box/metabolismo , Animales , Humanos
9.
Clin J Am Soc Nephrol ; 19(5): 565-572, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345854

RESUMEN

BACKGROUND: Urinary stone disease is a prevalent condition associated with a high recurrence risk. Preventive pharmacological therapy has been proposed to reduce recurrent stone episodes. However, limited evidence exists regarding its effectiveness, contributing to its underutilization by physicians. This study aimed to evaluate the association between preventive pharmacological therapy (thiazide diuretics, alkali therapy, and uric acid-lowering medications) and clinically significant urinary stone disease recurrence. METHODS: Using data from the Veterans Health Administration, adults with an index episode of urinary stone disease from 2012 through 2019 and at least one urinary abnormality (hypercalciuria, hypocitraturia, or hyperuricosuria) on 24-hour urine collection were included. The primary outcome was a composite variable representing recurrent stone events that resulted in emergency department visits, hospitalizations, or surgery for urinary stone disease. Cox proportional hazards regression was performed to estimate the association between preventive pharmacological therapy use and recurrent urinary stone disease while adjusting for relevant baseline patient characteristics. RESULTS: Among the cohort of patients with urinary abnormalities ( n =5637), treatment with preventive pharmacological therapy was associated with a significant 19% lower risk of recurrent urinary stone disease during the 12-36-month period after the initial urine collection (hazard ratio, 0.81; 95% confidence interval, 0.65 to 1.00; P = 0.0496). However, the effectiveness of preventive pharmacological therapy diminished over longer follow-up periods (12-48 and 12-60 months after the urine collection) and did not reach statistical significance. When examining specific urinary abnormalities, only alkali therapy for hypocitraturia was associated with a significant 26% lower recurrence risk within the 12-36-month timeframe (hazard ratio, 0.74; 95% confidence interval, 0.56 to 0.97; P = 0.03). CONCLUSIONS: When considering all urinary abnormalities together, this study demonstrates that the use of preventive pharmacological therapy is associated with a lower risk of clinically significant recurrent episodes of urinary stone disease in the 12-36 month timeframe after urine collection, although only the association with the use of alkali therapy for hypocitraturia was significant when individual abnormalities were examined.


Asunto(s)
Recurrencia , Inhibidores de los Simportadores del Cloruro de Sodio , Cálculos Urinarios , Humanos , Cálculos Urinarios/prevención & control , Cálculos Urinarios/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Anciano , Inhibidores de los Simportadores del Cloruro de Sodio/uso terapéutico , Ácido Úrico/orina , Prevención Secundaria , Adulto , Factores de Riesgo , Álcalis , Uricosúricos/uso terapéutico
10.
PLoS Genet ; 6(10): e1001142, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21060806

RESUMEN

Methylation of specific lysine residues in core histone proteins is essential for embryonic development and can impart active and inactive epigenetic marks on chromatin domains. The ubiquitous nuclear protein PTIP is encoded by the Paxip1 gene and is an essential component of a histone H3 lysine 4 (H3K4) methyltransferase complex conserved in metazoans. In order to determine if PTIP and its associated complexes are necessary for maintaining stable gene expression patterns in a terminally differentiated, non-dividing cell, we conditionally deleted PTIP in glomerular podocytes in mice. Renal development and function were not impaired in young mice. However, older animals progressively exhibited proteinuria and podocyte ultra structural defects similar to chronic glomerular disease. Loss of PTIP resulted in subtle changes in gene expression patterns prior to the onset of a renal disease phenotype. Chromatin immunoprecipitation showed a loss of PTIP binding and lower H3K4 methylation at the Ntrk3 (neurotrophic tyrosine kinase receptor, type 3) locus, whose expression was significantly reduced and whose function may be essential for podocyte foot process patterning. These data demonstrate that alterations or mutations in an epigenetic regulatory pathway can alter the phenotypes of differentiated cells and lead to a chronic disease state.


Asunto(s)
Histonas/metabolismo , Enfermedades Renales/metabolismo , Podocitos/metabolismo , Transducción de Señal , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Enfermedad Crónica , Proteínas de Unión al ADN , Femenino , Perfilación de la Expresión Génica , Riñón/metabolismo , Riñón/patología , Riñón/ultraestructura , Enfermedades Renales/genética , Enfermedades Renales/patología , Glomérulos Renales/citología , Glomérulos Renales/metabolismo , Lisina/metabolismo , Masculino , Metilación , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Podocitos/citología , Podocitos/ultraestructura , Receptor trkC/genética , Receptor trkC/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Urol Pract ; 10(1): 49-56, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36545539

RESUMEN

Purpose: Recent observational studies reporting a lack of benefit from 24-hour urine testing for urinary stone disease (USD) prevention assumed testing included all components recommended from clinical guidelines. We sought to assess the completeness of 24-hour urine testing in the VA population. Materials and methods: From the VHA Corporate Data Warehouse (2012-2019), we identified patients with USD (n=198,621) and determined those who saw a urologist and/or nephrologist, and received 24-hour urine testing within 12 months of their index USD encounter. Through Logical Observation Identifiers Names and Codes, we evaluated each collection's completeness, defined as including all of urine volume, calcium, oxalate, citrate, uric acid, and creatinine. We then fit a multilevel logistic regression model with random effects for VHA facility to evaluate factors associated with specialist follow-up, testing, and testing completeness. Results: Specialist follow-up occurred in 54.3% and was stable over time. Testing occurred in 8.4%, declining from 9.3% in 2012 to 7.2% in 2019. Of tests performed, 54.6% were complete (43.7% increasing to 62.7% from 2012-2019). In adjusted analysis, there was high between-facility variation in specialist follow-up (median OR 2.0; 95% CI 1.7-2.0), testing (median OR 2.2, 95% CI 1.9-2.4), and testing completeness (median OR, 6.0, 95% CI 4.5-7.3). Individual facilities contributed 52% (intraclass correlation coefficient, 0.52; 95% CI, 0.44-0.57) towards the observed variation in testing completeness. Conclusions: Approximately 1 in 12 U.S. Veterans with USD receive metabolic testing and half of these tests are complete. Addressing facility level variation in testing completeness may improve USD care.


Asunto(s)
Cálculos Urinarios , Urolitiasis , Veteranos , Humanos , Cálculos Urinarios/diagnóstico , Oxalatos/orina , Ácido Cítrico/orina
12.
bioRxiv ; 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37873377

RESUMEN

Acute kidney injury (AKI) is a common condition that lacks effective treatments. In part this shortcoming is due to an incomplete understanding of the genetic mechanisms that control pathogenesis and recovery. Pax2 and Pax8 are homologous transcription factors with overlapping functions that are critical for kidney development and are re-activated in AKI. In this report, we examined the role of Pax2 and Pax8 in recovery from ischemic AKI. We found that Pax2 and Pax8 are upregulated after severe AKI and correlate with chronic injury. Surprisingly, we then discovered that proximal-tubule-selective deletion of Pax2 and Pax8 resulted in a less severe chronic injury phenotype. This effect was mediated by protection against the acute insult, similar to preconditioning. Prior to injury, Pax2 and Pax8 mutant mice develop a unique subpopulation of S3 proximal tubule cells that display features usually seen only in acute or chronic injury. The expression signature of these cells was strongly enriched with genes associated with other mechanisms of protection against ischemic AKI including caloric restriction, hypoxic preconditioning, and female sex. Taken together, our results identify a novel role for Pax2 and Pax8 in mature proximal tubules that regulates critical genes and pathways involved in both injury response and protection from ischemic AKI. TRANSLATIONAL STATEMENT: Identifying the molecular and genetic regulators unique to the nephron that dictate vulnerability to injury and regenerative potential could lead to new therapeutic targets to treat ischemic kidney injury. Pax2 and Pax8 are two homologous nephron-specific transcription factors that are critical for kidney development and physiology. Here we report that proximal-tubule-selective depletion of Pax2 and Pax8 protects against both acute and chronic injury and induces an expression profile in the S3 proximal tubule with common features shared among diverse conditions that protect against ischemia. These findings highlight a new role for Pax proteins as potential therapeutic targets to treat AKI.

13.
Dev Cell ; 13(4): 580-92, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17925232

RESUMEN

The MLL family of histone methyltransferases maintains active chromatin domains by methylating histone H3 on lysine 4 (H3K4). How MLL complexes recognize specific chromatin domains in a temporal and tissue-specific manner remains unclear. We show that the DNA-binding protein PAX2 promotes assembly of an H3K4 methyltransferase complex through the ubiquitously expressed nuclear factor PTIP (pax transcription activation domain interacting protein). PTIP copurifies with ALR, MLL3, and other components of a histone methyltransferase complex. PTIP promotes assembly of the ALR complex and H3K4 methylation at a PAX2-binding DNA element. Without PTIP, Pax2 binds to this element but does not assemble the ALR complex. Embryonic lethal ptip-null mutants and conditional mutants both show reduced levels of methylated H3K4. Thus, PTIP bridges DNA-binding developmental regulators to histone methyltransferase-dependent epigenetic regulation.


Asunto(s)
Proteínas Portadoras/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteínas Nucleares/fisiología , Factor de Transcripción PAX2/metabolismo , Animales , Proteínas Portadoras/genética , Línea Celular , Proteínas de Unión al ADN , Epigénesis Genética , Gastrulación , Histona Metiltransferasas , Humanos , Metilación , Ratones , Proteínas Nucleares/genética , Unión Proteica , Proteína Metiltransferasas , Estructura Terciaria de Proteína
14.
Nat Med ; 11(4): 387-93, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15793581

RESUMEN

The bone morphogenetic proteins (BMPs) profoundly affect embryonic development, differentiation and disease. BMP signaling is suppressed by cysteine-rich domain proteins, such as chordin, that sequester ligands from the BMP receptor. We describe a novel protein, KCP, with 18 cysteine-rich domains. Unlike chordin, KCP enhances BMP signaling in a paracrine manner. Smad1-dependent transcription and phosphorylated Smad1 (P-Smad1) levels are increased, as KCP binds to BMP7 and enhances binding to the type I receptor. In vivo, Kcp(-/-) mice are viable and fertile. Because BMPs have a pivotal role in renal disease, we examined the phenotype of Kcp(-/-) mice in two different models of renal injury. Kcp(-/-) animals show reduced levels of P-Smad1, are more susceptible to developing renal interstitial fibrosis, are more sensitive to tubular injury and show substantial pathology after recovery. The data indicate an important role for KCP in attenuating the pathology of renal fibrotic disease.


Asunto(s)
Fibrosis/prevención & control , Riñón/patología , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Cisteína , Proteínas de Unión al ADN/metabolismo , Proteínas del Ojo/farmacología , Ratones , Mutación , Células 3T3 NIH , Proteínas del Tejido Nervioso/farmacología , Estructura Terciaria de Proteína , Proteínas/farmacología , Alineación de Secuencia , Transducción de Señal/efectos de los fármacos , Proteínas Smad , Proteína Smad1 , Transactivadores/metabolismo , Proteínas de Xenopus/farmacología
15.
Cell Chem Biol ; 29(3): 412-422.e4, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-34822752

RESUMEN

The Pax family of developmental control genes are frequently deregulated in human disease. In the kidney, Pax2 is expressed in developing nephrons but not in adult proximal and distal tubules, whereas polycystic kidney epithelia or renal cell carcinoma continues to express high levels. Pax2 reduction in mice or cell culture can slow proliferation of cystic epithelial cells or renal cancer cells. Thus, inhibition of Pax activity may be a viable, cell-type-specific therapy. We designed an unbiased, cell-based, high-throughput screen that identified triazolo pyrimidine derivatives that attenuate Pax transactivation ability. We show that BG-1 inhibits Pax2-positive cancer cell growth and target gene expression but has little effect on Pax2-negative cells. Chromatin immunoprecipitation suggests that these inhibitors prevent Pax protein interactions with the histone H3K4 methylation complex at Pax target genes in renal cells. Thus, these compounds may provide structural scaffolds for kidney-specific inhibitors with therapeutic potential.


Asunto(s)
Antineoplásicos , Neoplasias , Factor de Transcripción PAX2 , Animales , Antineoplásicos/farmacología , Proliferación Celular , Expresión Génica , Riñón/metabolismo , Metilación , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Factor de Transcripción PAX2/antagonistas & inhibidores , Factor de Transcripción PAX2/genética
16.
J Am Soc Nephrol ; 21(4): 587-97, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20150534

RESUMEN

The peak prevalence of ESRD from glomerulosclerosis occurs at 70 to 79 years. To understand why old glomeruli are prone to failure, we analyzed the Fischer 344 rat model of aging under ad libitum-fed (rapid aging) and calorie-restricted (slowed aging) conditions. All glomerular cells contained genes whose expression changed "linearly" during adult life from 2 to 24 months: mesangial cells (e.g., MMP9), endothelial cells (e.g., ICAM and VCAM), parietal epithelial cells (e.g., ceruloplasmin), and podocytes (e.g., nephrin and prepronociceptin). Patterns of aging glomerular gene expression closely resembled atherosclerosis, including activation of endothelial cells, epithelial cells, and macrophages, as well as proinflammatory pathways related to cell adhesion, chemotaxis, blood coagulation, oxidoreductases, matrix metalloproteinases, and TGF-beta activation. We used a nonbiased data-mining approach to identify NFkappaB as the likely transcriptional regulator of these events. We confirmed NFkappaB activation by two independent methods: translocation of NFkappaB p50 to glomerular nuclei and ChIP assays demonstrating NFkappaB p50 binding to the kappaB motif of target genes in old versus young glomeruli. These data suggest that old glomeruli exhibit NFkappaB-associated up-regulation of a proinflammatory, procoagulable, and profibrotic phenotype compared with young glomeruli; these distinctions could explain their enhanced susceptibility to failure. Furthermore, these results provide a potential mechanistic explanation for the close relationship between ESRD and atherosclerotic organ failure as two parallel arms of age-associated NFkappaB-driven processes.


Asunto(s)
Coagulación Sanguínea , Inflamación/etiología , Glomérulos Renales/patología , FN-kappa B/fisiología , Factores de Edad , Animales , Fibrosis/etiología , Regulación de la Expresión Génica , Masculino , FN-kappa B/genética , Ratas , Ratas Endogámicas F344
17.
Stem Cells ; 27(7): 1516-23, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19544464

RESUMEN

Pax transactivation domain-interacting protein (PTIP) is a ubiquitously expressed, nuclear protein that is part of a histone H3K4 methyltransferase complex and is essential for embryonic development. Methylation of H3K4 is an epigenetic mark found on many critical developmental regulatory genes in embryonic stem (ES) cells and, together with H3K27 methylation, constitutes a bivalent epigenetic signature. To address the function of PTIP in ES cells, we generated ES cell lines from a floxed ptip allele and deleted PTIP function with Cre recombinase. The ptip(-/-) ES cell lines exhibited a high degree of spontaneous differentiation to trophectoderm and a loss of pluripotency. Reduced levels of Oct4 expression and H3K4 methylation were observed. Upon differentiation, ptip(-/-) embryoid bodies showed reduced levels of marker gene expression for all three primary germ layers. These results suggest that the maintenance of H3K4 methylation is essential and requires PTIP function during the in vitro propagation of pluripotent ES cells.


Asunto(s)
Proteínas Portadoras/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas Nucleares/fisiología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Western Blotting , Proteínas Portadoras/genética , Diferenciación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN , Femenino , Histonas/metabolismo , Inmunohistoquímica , Masculino , Metilación , Ratones , Ratones Mutantes , Proteínas Nucleares/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Mol Cell Biol ; 26(12): 4577-85, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16738323

RESUMEN

The transforming growth factor beta (TGF-beta) superfamily, including the bone morphogenetic protein (BMP) and TGF-beta/activin A subfamilies, is regulated by secreted proteins able to sequester or present ligands to receptors. KCP is a secreted, cysteine-rich (CR) protein with similarity to mouse Chordin and Xenopus laevis Kielin. KCP is an enhancer of BMP signaling in vertebrates and interacts with BMPs and the BMP type I receptor to promote receptor-ligand interactions. Mice homozygous for a KCP null allele are hypersensitive to developing renal interstitial fibrosis, a disease stimulated by TGF-beta but inhibited by BMP7. In this report, the effects of KCP on TGF-beta/activin A signaling are examined. In contrast to the enhancing effect on BMPs, KCP inhibits both activin A- and TGF-beta1-mediated signaling through the Smad2/3 pathway. These inhibitory effects of KCP are mediated in a paracrine manner, suggesting that direct binding of KCP to TGF-beta1 or activin A can block the interactions with prospective receptors. Consistent with this inhibitory effect, primary renal epithelial cells from KCP mutant cells are hypersensitive to TGF-beta and exhibit increased apoptosis, dissociation of cadherin-based cell junctions, and expression of smooth muscle actin. Furthermore, KCP null animals show elevated levels of phosphorylated Smad2 after renal injury. The ability to enhance BMP signaling while suppressing TGF-beta activation indicates a critical role for KCP in modulating the responses between these anti- and profibrotic cytokines in the initiation and progression of renal interstitial fibrosis.


Asunto(s)
Proteínas Portadoras/metabolismo , Subunidades beta de Inhibinas/metabolismo , Riñón/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Fibrosis , Riñón/patología , Ratones , Ratones Noqueados , Células 3T3 NIH , Transducción de Señal , Proteína Smad2/metabolismo
19.
PLoS One ; 13(6): e0198013, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29924795

RESUMEN

Nephrin (Nphs1) is an adhesion protein that is expressed at the podocyte intercellular junction in the glomerulus. Nphs1 mutations in humans or deletion in animal genetic models results in a developmental failure of foot process formation. A number of studies have shown decrease in expression of nephrin in various proteinuric kidney diseases as well as in animal models of glomerular disease. Decrease in nephrin expression has been suggested to precede podocyte loss and linked to the progression of kidney disease. Whether the decrease in expression of nephrin is related to loss of podocytes or lead to podocyte detachment is unclear. To answer this central question we generated an inducible model of nephrin deletion (Nphs1Tam-Cre) in order to lower nephrin expression in healthy adult mice. Following tamoxifen-induction there was a 75% decrease in nephrin expression by 14 days. The Nphs1Tam-Cre mice had normal foot process ultrastructure and intact filtration barriers up to 4-6 weeks post-induction. Despite the loss of nephrin expression, the podocyte number and density remained unchanged during the initial period. Unexpectedly, nephrin expression, albeit at low levels persisted at the slit diaphragm up to 16-20 weeks post-tamoxifen induction. The mice became progressively proteinuric with glomerular hypertrophy and scarring reminiscent of focal and segmental glomerulosclerosis at 20 weeks. Four week-old Nphs1 knockout mice subjected to protamine sulfate model of podocyte injury demonstrated failure to recover from foot process effacement following heparin sulfate. Similarly, Nphs1 knockout mice failed to recover following nephrotoxic serum (NTS) with persistence of proteinuria and foot process effacement. Our results suggest that as in development, nephrin is necessary for maintenance of a healthy glomerular filter. In contrast to the developmental phenotype, lowering nephrin expression in a mature glomerulus resulted in a slowly progressive disease that histologically resembles FSGS a disease linked closely with podocyte depletion. Podocytes with low levels of nephrin expression are both susceptible and unable to recover following perturbation. Our results suggest that decreased nephrin expression independent of podocyte loss occurring as an early event in proteinuric kidney diseases might play a role in disease progression.


Asunto(s)
Glomérulos Renales/citología , Glomérulos Renales/lesiones , Proteínas de la Membrana/metabolismo , Podocitos/metabolismo , Animales , Membrana Celular/metabolismo , Eliminación de Gen , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Podocitos/citología , Estabilidad Proteica , Proteinuria/genética
20.
Trends Mol Med ; 11(11): 512-8, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16216558

RESUMEN

Fibrosis, and in particular tubulointerstitial fibrosis, is a common feature of almost all chronic renal diseases. Over the past several years, significant progress has been made in defining the underlying mechanisms of tubulointerstitial fibrosis. In a variety of mouse models, expression of transforming growth factor-beta is a primary causative factor which leads to increased numbers of myofibroblasts, collagen deposition and loss of tubular epithelia. More recently, another member of the transforming growth factor-beta superfamily, BMP7, was shown to counteract transforming growth factor-beta-mediated fibrosis. The activities of these secreted factors are regulated, in part, by extracellular ligand binding proteins which can enhance or suppress receptor ligand interactions.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Enfermedades Renales/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proteína Morfogenética Ósea 7 , Proteínas Portadoras/metabolismo , Epitelio/metabolismo , Fibrosis/etiología , Fibrosis/metabolismo , Humanos , Enfermedades Renales/etiología , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA