RESUMEN
High-energy-density battery-type materials have sparked considerable interest as supercapacitors electrode; however, their sluggish charge kinetics limits utilization of redox-active sites, resulting in poor electrochemical performance. Here, the unique core-shell architecture of metal organic framework derived N-S codoped carbon@Cox Sy micropetals decorated with Nb-incorporated cobalt molybdate nanosheets (Nb-CMO4 @Cx Sy NC) is demonstrated. Coordination bonding across interfaces and π-π stacking interactions between CMO4 @Cx Sy and N and, S-C can prevent volume expansion during cycling. Density functional theory analysis reveals that the excellent interlayer and the interparticle conductivity imparted by Nb doping in heteroatoms synergistically alter the electronic states and offer more accessible species, leading to increased electrical conductivity with lower band gaps. Consequently, the optimized electrode has a high specific capacity of 276.3 mAh g-1 at 1 A g-1 and retains 98.7% of its capacity after 10 000 charge-discharge cycles. A flexible quasi-solid-state SC with a layer-by-layer deposited reduced graphene oxide /Ti3 C2 TX anode achieves a specific energy of 75.5 Wh kg-1 (volumetric energy of 1.58 mWh cm-3 ) at a specific power of 1.875 kWh kg-1 with 96.2% capacity retention over 10 000 charge-discharge cycles.
RESUMEN
Ultra-high energy density battery-type materials are promising candidates for supercapacitors (SCs); however, slow ion kinetics and significant volume expansion remain major barriers to their practical applications. To address these issues, hierarchical lattice distorted α-/γ-MnS@Cox Sy core-shell heterostructure constrained in the sulphur (S), nitrogen (N) co-doped carbon (C) metal-organic frameworks (MOFs) derived nanosheets (α-/γ-MnS@Cox Sy @N, SC) have been developed. The coordination bonding among Cox Sy , and α-/γ-MnS nanoparticles at the interfaces and the π-π stacking interactions developed across α-/γ-MnS@Cox Sy and N, SC restrict volume expansion during cycling. Furthermore, the porous lattice distorted heteroatom-enriched nanosheets contain a sufficient number of active sites to allow for efficient electron transportation. Density functional theory (DFT) confirms the significant change in electronic states caused by heteroatom doping and the formation of core-shell structures, which provide more accessible species with excellent interlayer and interparticle conductivity, resulting in increased electrical conductivity. . The α-/γ-MnS@Cox Sy @N, SC electrode exhibits an excellent specific capacity of 277 mA hg-1 and cycling stability over 23 600 cycles. A quasi-solid-state flexible extrinsic pseudocapacitor (QFEPs) assembled using layer-by-layer deposited multi-walled carbon nanotube/Ti3 C2 TX nanocomposite negative electrode. QFEPs deliver specific energy of 64.8 Wh kg-1 (1.62 mWh cm-3 ) at a power of 933 W kg-1 and 92% capacitance retention over 5000 cycles.
RESUMEN
Conversion of CO2 into valuable chemicals via electrochemical CO2 reduction reaction (CO2RR) is a promising technology to alleviate the energy crisis and the greenhouse effect. Herein, low-cost wood biomass was applied as the carbon source to prepare nitrogen (N)-doped carbon electrocatalysts for the conversion of CO2 to CO and further as the cathode material for Zn-CO2 batteries. By virtue of N-doping and assistance of FeCl3, a cedar biomass-derived three-dimensional (3D) N-doped graphitized carbon with a high N-doping content (5.38%), an ultrahigh specific surface area (1673.6 m2 g-1), rich nanopores, and sufficient active N sites was successfully obtained, which exhibited super CO2RR activity with a high faradaic efficiency of 91% at a low applied potential of 0.56 V (vs RHE) and a long-term stability for at least 20 h. Furthermore, a Zn-CO2 battery with it as the cathode material delivered a stable open circuit voltage of 0.79 V, a peak power density of 0.51 mW cm-2 at 2.14 mA cm-2, and a maximum faradaic efficiency to CO of 80.4% at 2.56 mA cm-2, indicating that it could be applied in a practical process by using CO2 to generate power with the production of CO. Density functional theory calculations revealed that pyridinic N could more effectively decrease the free energy barriers for CO2RR and boost the reaction. This work not only revealed a facile approach to convert waste biomass into N-doped-graphitization carbon as valuable CO2RR electrocatalysts but also provided a new strategy to achieve "carbon solving carbon's problem".
RESUMEN
Owing to excellent metallic conductivity, hydrophilic surfaces, and surface redox properties, a two-dimensional (2D) metal carbide of Ti3C2Tx-MXene could serve as a promising pseudocapacitive electrode material for energy storage devices. Meanwhile, the 2D reduced graphene oxide (rGO) combining with the hierarchical cubic spinel nickel-cobalt bimetal oxide (NiCo2O4) nanospikes could control ion diffusion for charge storage, thereby facilitating the improvement of the energy density of a supercapacitor. As per the strategy, the pseudocapacitive 2D Ti3C2Tx was loaded on a flexible acid-treated carbon fiber (ACF) backbone to prepare a Ti3C2Tx/ACF negative electrode by a convenient drop-casting method. Meanwhile, 2D rGO was deposited on ACF by a simple dip-dry process, which was further decorated by the spinel NiCo2O4 nanospikes using a hydrothermal method to obtain a NiCo2O4@rGO/ACF positive electrode. The fabricated Ti3C2Tx/ACF electrode exhibited an excellent specific capacitance of 246.9 F/g (197.5 mF/cm2) at 4 mA/cm2 along with 96.7% capacity retention over 5000 charge/discharge cycles, whereas the NiCo2O4@rGO/ACF electrode showed a specific capacitance of 1487 F/g (458.3 mA h/g) at 3 mA/cm2 with a cycling stability of 88.2% over 10â¯000 charge/discharge cycles. As a result, a flexible all-solid-state hybrid supercapacitor (FHSC) device using the pseudocapacitive Ti3C2Tx/ACF on the negative side with a widespread voltage window and the battery-type NiCo2O4@rGO/ACF on the positive side with high electrochemical activity delivered an excellent volumetric capacitance of 2.32 F/cm3 (141.9 F/g) at a current density of 5 mA/cm2 with a high-energy density of 44.36 Wh/kg (0.72 mWh/cm3) at a power density of 985 W/kg (16.13 mW/cm3) along with a cycling stability of 90.48% over 4500 charge/discharge cycles. Therefore, the pseudocapacitive 2D Ti3C2Tx/ACF negative electrode could replace carbon-based electrodes and a combination of it with the battery-type NiCo2O4@rGO/ACF positive electrode should be a promising way to step up the energy density of a supercapacitor.
RESUMEN
A simplistic and economical chemical way has been used to prepare highly efficient nanostructured, manganese oxide (α-MnO2) and hexagonal copper sulfide (h-CuS) electrodes directly on cheap and flexible stainless steel sheets. Flexible solid-state α-MnO2/flexible stainless steel (FSS)/polyvinyl alcohol (PVA)-LiClO4/h-CuS/FSS asymmetric supercapacitor (ASC) devices have been fabricated using PVA-LiClO4 gel electrolyte. Highly active surface areas of α-MnO2 (75 m2 g-1) and h-CuS (83 m2 g-1) electrodes contribute to more electrochemical reactions at the electrode and electrolyte interface. The ASC device has a prolonged working potential of +1.8 V and accomplishes a capacitance of 109.12 F g-1 at 5 mV s-1, energy density of 18.9 Wh kg-1, and long-term electrochemical cycling with a capacity retention of 93.3% after 5000 cycles. Additionally, ASC devices were successful in glowing seven white-light-emitting diodes for more than 7 min after 30 s of charging. Outstandingly, real practical demonstration suggests "ready-to-sell" products for industries.
RESUMEN
In present investigation, we have prepared a nanocomposites of highly porous MnO2 spongy balls and multi-walled carbon nanotubes (MWCNTs) in thin film form and tested in novel redox-active electrolyte (K3[Fe(CN)6] doped aqueous Na2SO4) for supercapacitor application. Briefly, MWCNTs were deposited on stainless steel substrate by "dip and dry" method followed by electrodeposition of MnO2 spongy balls. Further, the supercapacitive properties of these hybrid thin films were evaluated in hybrid electrolyte ((K3[Fe(CN)6 doped aqueous Na2SO4). Thus, this is the first proof-of-design where redox-active electrolyte is applied to MWCNTs/MnO2 hybrid thin films. Impressively, the MWCNTs/MnO2 hybrid film showed a significant improvement in electrochemical performance with maximum specific capacitance of 1012 Fg-1 at 2 mA cm-2 current density in redox-active electrolyte, which is 1.5-fold higher than that of conventional electrolyte (Na2SO4). Further, asymmetric capacitor based on MWCNTs/MnO2 hybrid film as positive and Fe2O3 thin film as negative electrode was fabricated and tested in redox-active electrolytes. Strikingly, MWCNTs/MnO2//Fe2O3 asymmetric cell showed an excellent supercapacitive performance with maximum specific capacitance of 226 Fg-1 and specific energy of 54.39 Wh kg-1 at specific power of 667 Wkg-1. Strikingly, actual practical demonstration shows lightning of 567 red LEDs suggesting "ready-to sell" product for industries.