Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cancers (Basel) ; 15(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37958378

RESUMEN

Juvenile myelomonocytic leukemia (JMML) is a deadly pediatric leukemia driven by RAS pathway mutations, of which >35% are gain-of-function in PTPN11. Although DNA hypermethylation portends severe clinical phenotypes, the landscape of histone modifications and chromatin profiles in JMML patient cells have not been explored. Using global mass cytometry, Epigenetic Time of Flight (EpiTOF), we analyzed hematopoietic stem and progenitor cells (HSPCs) from five JMML patients with PTPN11 mutations. These data revealed statistically significant changes in histone methylation, phosphorylation, and acetylation marks that were unique to JMML HSPCs when compared with healthy controls. Consistent with these data, assay for transposase-accessible chromatin with sequencing (ATAC-seq) analysis revealed significant alterations in chromatin profiles at loci encoding post-translational modification enzymes, strongly suggesting their mis-regulated expression. Collectively, this study reveals histone modification pathways as an additional epigenetic abnormality in JMML patient HSPCs, thereby uncovering a new family of potential druggable targets for the treatment of JMML.

2.
J Tissue Eng Regen Med ; 16(5): 496-510, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35175691

RESUMEN

Segmental recanalization of chronically occluded arteries was observed in patients with chronic limb-threatening ischemia (CLTI) treated with Filgrastim, a granulocyte colony stimulating factor, every 72 h for up to a month, and an infra-geniculate programmed compression pump (PCP) for 3 h daily. Molecular evidence for fibrinolysis and neovascularization was sought. CLTI patients were treated with PCP alone (N = 19), or with Filgrastim and PCP (N = 8 and N = 6, at two institutions). Enzyme-Linked Immunosorbent Assay was used to measure the plasma concentration of plasmin and of fibrin degradation products (FDP), and the serum concentration of proteins associated with neovascularization. In the PCP-alone group, blood was sampled on Day 1 (baseline) and after 30 days of daily PCP. In the Filgrastim and PCP group, blood was drawn on Day 1, and 1 day after the 5th and the 10th Filgrastim doses. Each blood draw occurred before and after 2 h of supervised PCP. Significant (p < 0.01) PCP independent increases in the plasma concentration of plasmin (>10-fold) and FDP (>5-fold) were observed 1 day after both the 5th and the 10th Filgrastim doses, compared to Day 1. Significant (p < 0.05) increases in the concentration of pro-angiogenic proteins (e.g., HGF, MMP-9, VEGF A) were also observed. Filgrastim at this novel dosimetry induced fibrinolysis without causing acute hemorrhage, in addition to inducing a pro-angiogenic milieu conducive to NV. Further clinical testing is warranted at this novel dosimetry in CLTI, as well as in other chronically ischemic tissue beds. Trial registration. https://clinicaltrials.gov/ct2/show/NCT02802852.


Asunto(s)
Antígenos de Grupos Sanguíneos , Fibrinólisis , Fibrinolisina , Filgrastim/farmacología , Factor Estimulante de Colonias de Granulocitos/farmacología , Humanos , Neovascularización Patológica , Proteínas Recombinantes
3.
Int J Radiat Biol ; 97(sup1): S45-S62, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32909860

RESUMEN

PURPOSE: Animal models that accurately reflect human responses to radiation injury are needed for advanced mechanistic investigation and development of effective therapeutics. The rabbit is an established animal model accepted by the FDA for studies of cardiovascular disease, lipid metabolism, the development of anticoagulants, testing of bone implants, and the development of treatments for infectious diseases such as HIV. The purpose of this study was to investigate the New Zealand White (NZW) Rabbit model as a model of acute radiation exposure because of its established similarity to human vascular, immune, and coagulation responses. MATERIALS AND METHODS: Two sequential studies were performed in a total of 81 male NZW rabbits, 16-20 weeks of age. All animals underwent clinical observations and peripheral blood analyses following a single dose of 0, 6, 7, 8, 8.5, 9, or 10 Gy of total body irradiation via a 6 MV Linear accelerator photon source on day 0. Animals were treated with timed release fentanyl patch (days 0-30), subcutaneous hydration (day 1, Study 2 only), and oral sulfamethoxazole/trimethoprim 30 mg/kg once daily (days 3-30) and were followed for 30 days or to time of mortality. RESULTS: Study 1 revealed the estimated LD30, -50, -70, and -90 with 95% confidence intervals (CI) at 30 days to be 6.7 (CI: 5.9-7.4), 7.3 (CI: 6.7-7.8), 7.9 (CI: 7.3-8.4), and 8.8 (CI: 7.9-9.7) Gy, respectively. In study 2, a survey of blood coagulation and biochemical parameters were performed over time and necropsy. Complete blood counts taken from animals exposed to 7, 8, or 10 Gy, demonstrated dose-dependent depletion of lymphocytes, neutrophils, and platelets. Platelet counts recovered to baseline levels in survivors by day 30, whereas lymphocyte and neutrophil counts did not. Decedent animals demonstrated grade 3 or 4 neutropenia and lymphopenia at time of death; 64% of the decedents experienced a 30% or greater drop in hematocrit. Decedent animals demonstrated more than 100% increases from serum baseline levels of blood urea nitrogen, creatinine, aspartate aminotransferase, and triglyceride levels at the time of death whereas survivors on average demonstrated modest or no elevation. CONCLUSION: This NZW rabbit model demonstrates dose-dependent depletion of hematopoietic parameters. The LD50/30 of 7.8 Gy (95% CI: 6.6-8.4) with supportive care appears to be close to the ranges reported for rhesus macaques (5.25-7.44 Gy) and humans (6-8 Gy) with supportive care. These findings support the utility of the NZW rabbit model for further mechanistic investigation of acute radiation exposure and medical countermeasure testing.


Asunto(s)
Síndrome de Radiación Aguda , Síndrome de Radiación Aguda/etiología , Animales , Coagulación Sanguínea , Modelos Animales de Enfermedad , Macaca mulatta , Masculino , Conejos , Dosis de Radiación , Irradiación Corporal Total/efectos adversos
4.
Photobiomodul Photomed Laser Surg ; 37(1): 45-52, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31050943

RESUMEN

Objective: The aim of our study was to quantify the effect of doses delivered by a He:Ne laser on individual macrophage kinetics, tissue oxidative stress, and wound closure using real-time in vivo imaging. Background: Photobiomodulation has been reported to reduce tissue inflammation and accelerate wound closure; however, precise parameters of laser settings to optimize macrophage behavior have not been established. We hypothesized that quantitative and real-time in vivo imaging could identify optimal fluence for macrophage migration, reduction of reactive oxygen species, and acceleration of wound closure. Methods: Larval zebrafish Tg(mpeg-dendra2) were loaded with dihydroethidium for oxidative stress detection. Fish were caudal fin injured, treated with 635 nm continuous 5 mW He:Ne laser irradiation at 3, 9, or 18 J/cm2 and time-lapsed imaged within the first 120 min postinjury. Images taken 1 and 24-h postinjury were compared for percentage wound closure. Results: A fluence of 3 J/cm2 demonstrated significant increases in macrophage migration speed, fewer stops along the way, and greatest directed migration toward the wound. These findings were associated with a significant reduction in wound content reactive oxygen species when compared with control wounded fins. Both 3 and 9 J/cm2 significantly accelerated wound closure when compared with nonirradiated control fish. Conclusions: Wound macrophage activity could be manipulated by applied fluence, leading to reduced levels of wound reactive oxygen species and accelerated wound closure. The zebrafish model provides a means to quantitatively compare wound macrophage behavior in response to a variety of laser treatment parameters in real time.


Asunto(s)
Terapia por Luz de Baja Intensidad/métodos , Macrófagos/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Cicatrización de Heridas/efectos de la radiación , Animales , Movimiento Celular/efectos de la radiación , Cinética , Microscopía Fluorescente , Pez Cebra
5.
Photomed Laser Surg ; 34(11): 556-563, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27244220

RESUMEN

OBJECTIVE: To address whether a single treatment of one of three visible light wavelengths, 635, 532, and 405 nm (constant wave, energy density 2.9 J/m2), could affect the hallmarks of established renal fibrosis and whether these wavelengths could facilitate mesenchymal stem cell (MSC) beneficence. BACKGROUND DATA: Chronic kidney disease is a global health problem with only 20% receiving care worldwide. Kidneys with compromised function have ongoing inflammation, including increased oxidative stress and apoptosis, peritubular capillary loss, tubular atrophy, and tubulointerstitial fibrosis. Promising studies have highlighted the significant potential of MSC-based strategies to mitigate fibrosis; however, reversal of established fibrosis has been problematic, suggesting that methods to potentiate MSC effects require further development. Laser treatments at visible wavelengths have been reported to enhance mitochondrial potential and available cellular ATP, facilitate proliferation, and inhibit apoptosis. We hypothesized that laser-delivered energy might provide wavelength-specific effects in the fibrotic kidney and enhance MSC responses. MATERIALS AND METHODS: Renal fibrosis, established in C57BL6 mice following 21 days of unilateral ureter obstruction (UUO), was treated with one of three wavelengths alone or with autologous MSC. Mitochondrial activity, cell proliferation, apoptosis, and cytokines were measured 24 h later. RESULTS: Wavelengths 405, 532, and 635 nm all significantly synergized with MSC to enhance mitochondrial activity and reduce apoptosis. Proliferative activity was observed in the renal cortices following combined treatment with the 532 nm laser and MSC; endothelial proliferation increased in response to the 635 nm laser alone and to the combined effects of MSC and the 405 nm wavelength. Reductions of transforming growth factor-ß were observed with 532 nm alone and when combined with MSC. CONCLUSIONS: Specific wavelengths of laser energy appear to induce different responses in renal fibrotic tissue. These findings support further study in the development of a customized laser therapy program of combined wavelengths to optimize MSC effects in the treatment of renal fibrosis.


Asunto(s)
Fibrosis/radioterapia , Enfermedades Renales/radioterapia , Terapia por Luz de Baja Intensidad/métodos , Trasplante de Células Madre Mesenquimatosas/métodos , Regeneración/efectos de la radiación , Animales , Apoptosis/efectos de la radiación , Biopsia con Aguja , Modelos Animales de Enfermedad , Fibrosis/patología , Fibrosis/cirugía , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Enfermedades Renales/patología , Enfermedades Renales/cirugía , Rayos Láser , Masculino , Células Madre Mesenquimatosas/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Proyectos Piloto , Distribución Aleatoria , Valores de Referencia , Regeneración/fisiología , Trasplante Autólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA