Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 62(30): 11751-11760, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37471624

RESUMEN

Six new solvent-free, homoleptic paramagnetic tris(alkyl)lanthanides Ln{C(SiHMe2)3}3 (1Ln) and Ln{C(SiHMe2)2Ph}3 (2Ln) (Ln = Gd, Dy, and Er) were synthesized to investigate the magnetic properties of 4f organometallic compounds stabilized by secondary Ln↼H-Si and benzylic interactions. The unit cell of 1Gd contains one independent molecule (Z = 2), while 1Dy and 1Er crystallize with four independent isostructural molecules per unit cell (Z = 16). In all molecules, as in other 1Ln compounds, the three tris(dimethylsilyl)methyl ligands form a trigonal planar LnC3 core, and six secondary interactions involving Ln↼H-Si bonding in Ln{C(SiHMe2)3}3 form above and below the equatorial plane. Two and five crystallographically independent molecules of each 2Ln (2Gd, Z = 8; 2Dy, Z = 20) form with three π-coordinated phenyl groups in addition to either one or two secondary Ln↼H-Si interactions per molecule. The packing of these midseries organolanthanide compounds contrasts the single crystallographically unique molecules in previously reported La{C(SiHMe2)3}3 (1La, Z = 2, Z' = 1) and La{C(SiHMe2)2Ph}3 (2La, Z = 2, Z' = 1/3). 2La doped with 2Dy can adopt the crystallographic structure of 2La, which promotes magnetic properties, namely a higher χmT value at low temperatures as well as stronger magnetic anisotropy. The ac susceptibility data for 10% 2Dy doped into 2La suggests slow relaxation at low temperatures with a relaxation barrier of ∼45 K. The computed saturated magnetization of 1Er (M ≈ 4.5 µB) and 1Dy (M ≈ 6 µB) matches the experimental values, while the computed value for 2Dy better matches the value measured for 2Dy diluted in 2La (M ≈ 5 µB). Gas-phase calculations predict that the ground-state and first excited-state multiplet separations are larger for 1Er than 2Er, while the ordering for dysprosium is 1Dy > 2Dy.

2.
Chemistry ; 27(40): 10428-10436, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-33876468

RESUMEN

Three-coordinate Ph BOX Me 2 ZnR (Ph BOX Me 2 =phenyl-(4,4-dimethyl-oxazolinato; R=Me: 2 a, Et: 2 b) catalyzes the dehydrocoupling of primary or secondary silanes and alcohols to give silyl ethers and hydrogen, with high turnover numbers (TON; up to 107 ) under solvent-free conditions. Primary and secondary silanes react with small, medium, and large alcohols to give various degrees of substitution, from mono- to tri-alkoxylation, whereas tri-substituted silanes do not react with MeOH under these conditions. The effect of coordinative unsaturation on the behavior of the Zn catalyst is revealed through a dramatic variation of both rate law and experimental rate constants, which depend on the concentrations of both the alcohol and hydrosilane reactants. That is, the catalyst adapts its mechanism to access the most facile and efficient conversion. In particular, either alcohol or hydrosilane binds to the open coordination site on the Ph BOX Me 2 ZnOR catalyst to form a Ph BOX Me 2 ZnOR(HOR) complex under one set of conditions or an unprecedented σ-adduct Ph BOX Me 2 ZnOR(H-SiR'3 ) under other conditions. Saturation kinetics provide evidence for the latter species, in support of the hypothesis that σ-bond metathesis reactions involving four-centered electrocyclic 2σ-2σ transition states are preceded by σ-adducts.

3.
J Am Chem Soc ; 142(6): 2935-2947, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31927883

RESUMEN

Single-site organolanthanum complexes supported on mesoporous silica nanoparticles, La{C(SiHMe2)3}n@MSNs, catalyze the ring-opening hydroboration reaction of aliphatic and styrenic epoxides with pinacolborane (HBpin). The surface-bound complexes, synthesized by reaction of the homoleptic tris(alkyl)lanthanum La{C(SiHMe2)3}3 and SBA-type MSN treated at 700 °C (MSN700), are mostly monopodal ≡SiO-La{C(SiHMe2)3}2 and contain an average of one bridging La↼H-Si per alkyl ligand. This structure was established through a combination of solid-state NMR (SSNMR) experiments, including J-resolved SiH coupling and quantitative 29Si measurements, diffuse reflectance IR, and elemental analysis. These rigorous analyses also established that grafting reactions in pentane provide a preponderance of ≡SiO-La{C(SiHMe2)3}2 sites and are superior to those in benzene and THF, and that grafting onto MSN treated at 550 °C (MSN550) results in a mixture of surface species. The single-site supported catalysts are more selective and in most cases more active than the homogeneous analogue, allow easy purification of products from the catalyst, are strongly resistant to leaching into solution phase, and may be recycled for reuse at least five times. After reaction of La{C(SiHMe2)3}n@MSN and HBpin, species including ≡SiO-La{C(SiHMe2)3}(H2Bpin) and ≡SiO-La{C(SiHMe2)3}{κ2-pinB-O(CMe2)2OBH3} are identified by detailed 1D and 2D 11B SSNMR experiments.

4.
Angew Chem Int Ed Engl ; 58(8): 2505-2509, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566754

RESUMEN

The high catalytic reactivity of homoleptic tris(alkyl) lanthanum La{C(SiHMe2 )3 }3 is highlighted by C-O bond cleavage in the hydroboration of esters and epoxides at room temperature. The catalytic hydroboration tolerates functionality typically susceptible to insertion, reduction, or cleavage reactions. Turnover numbers (TON) up to 10 000 are observed for aliphatic esters. Lanthanum hydrides, generated by reactions with pinacolborane, are competent for reduction of ketones but are inert toward esters. Instead, catalytic reduction of esters requires activation of the lanthanum hydride by pinacolborane.

5.
J Am Chem Soc ; 139(46): 16862-16874, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-28991458

RESUMEN

Homoleptic tris(alkyl) rare earth complexes Ln{C(SiHMe2)3}3 (Ln = La, 1a; Ce, 1b; Pr, 1c; Nd, 1d) are synthesized in high yield from LnI3THFn and 3 equiv of KC(SiHMe2)3. X-ray diffraction studies reveal 1a-d are isostructural, pseudo-C3-symmetric molecules that contain two secondary Ln↼HSi interactions per alkyl ligand (six total). Spectroscopic assignments are supported by comparison with Ln{C(SiDMe2)3}3 and DFT calculations. The Ln↼HSi and terminal SiH exchange rapidly on the NMR time scale at room temperature, but the two motifs are resolved at low temperature. Variable-temperature NMR studies provide activation parameters for the exchange process in 1a (ΔH⧧ = 8.2(4) kcal·mol-1; ΔS⧧ = -1(2) cal·mol-1K-1) and 1a-d9 (ΔH⧧ = 7.7(3) kcal·mol-1; ΔS⧧ = -4(2) cal·mol-1K-1). Comparisons of lineshapes, rate constants (kH/kD), and slopes of ln(k/T) vs 1/T plots for 1a and 1a-d9 reveal that an inverse isotope effect dominates at low temperature. DFT calculations identify four low-energy intermediates containing five ß-Si-H⇀Ln and one γ-C-H⇀Ln. The calculations also suggest the pathway for Ln↼HSi/SiH exchange involves rotation of a single C(SiHMe2)3 ligand that is coordinated to the Ln center through the Ln-C bond and one secondary interaction. These robust organometallic compounds persist in solution and in the solid state up to 80 °C, providing potential for their use in a range of synthetic applications. For example, reactions of Ln{C(SiHMe2)3}3 and ancillary proligands, such as bis-1,1-(4,4-dimethyl-2-oxazolinyl)ethane (HMeC(OxMe2)2) give {MeC(OxMe2)2}Ln{C(SiHMe2)3}2, and reactions with disilazanes provide solvent-free lanthanoid tris(disilazides).

6.
Angew Chem Int Ed Engl ; 56(2): 628-631, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-27900844

RESUMEN

The homoleptic organocerium complex Ce{C(SiHMe2 )3 }3 (1) reacts with B(C6 F5 )3 to produce the zwitterionic bis(alkyl) hydridoborato Ce{C(SiHMe2 )3 }2 HB(C6 F5 )3 (2). NMR and IR spectroscopy and X-ray crystallography indicate that each alkyl ligand contains two bridging Ce↼H-Si interactions in both 1 and 2. Compound 2 serves as a precatalyst for the hydrosilylation of acrylates to give α-silyl esters at room temperature with a turnover number of 2200.

7.
ACS Cent Sci ; 5(11): 1795-1803, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31807681

RESUMEN

Our civilization relies on synthetic polymers for all aspects of modern life; yet, inefficient recycling and extremely slow environmental degradation of plastics are causing increasing concern about their widespread use. After a single use, many of these materials are currently treated as waste, underutilizing their inherent chemical and energy value. In this study, energy-rich polyethylene (PE) macromolecules are catalytically transformed into value-added products by hydrogenolysis using well-dispersed Pt nanoparticles (NPs) supported on SrTiO3 perovskite nanocuboids by atomic layer deposition. Pt/SrTiO3 completely converts PE (M n = 8000-158,000 Da) or a single-use plastic bag (M n = 31,000 Da) into high-quality liquid products, such as lubricants and waxes, characterized by a narrow distribution of oligomeric chains, at 170 psi H2 and 300 °C under solvent-free conditions for reaction durations up to 96 h. The binding of PE onto the catalyst surface contributes to the number averaged molecular weight (M n) and the narrow polydispersity (D) of the final liquid product. Solid-state nuclear magnetic resonance of 13C-enriched PE adsorption studies and density functional theory computations suggest that PE adsorption is more favorable on Pt sites than that on the SrTiO3 support. Smaller Pt NPs with higher concentrations of undercoordinated Pt sites over-hydrogenolyzed PE to undesired light hydrocarbons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA