Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 79(1): 84-98.e9, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32526163

RESUMEN

Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT.


Asunto(s)
Azepinas/farmacología , Encéfalo/patología , Proteínas de Ciclo Celular/metabolismo , Interneuronas/patología , Proteína 2 de Unión a Metil-CpG/fisiología , Síndrome de Rett/patología , Factores de Transcripción/metabolismo , Transcriptoma/efectos de los fármacos , Triazoles/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Femenino , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fenotipo , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Factores de Transcripción/genética
2.
Proc Natl Acad Sci U S A ; 121(6): e2309333121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289951

RESUMEN

We present improved estimates of air-sea CO2 exchange over three latitude bands of the Southern Ocean using atmospheric CO2 measurements from global airborne campaigns and an atmospheric 4-box inverse model based on a mass-indexed isentropic coordinate (Mθe). These flux estimates show two features not clearly resolved in previous estimates based on inverting surface CO2 measurements: a weak winter-time outgassing in the polar region and a sharp phase transition of the seasonal flux cycles between polar/subpolar and subtropical regions. The estimates suggest much stronger summer-time uptake in the polar/subpolar regions than estimates derived through neural-network interpolation of pCO2 data obtained with profiling floats but somewhat weaker uptake than a recent study by Long et al. [Science 374, 1275-1280 (2021)], who used the same airborne data and multiple atmospheric transport models (ATMs) to constrain surface fluxes. Our study also uses moist static energy (MSE) budgets from reanalyses to show that most ATMs tend to have excessive diabatic mixing (transport across moist isentrope, θe, or Mθe surfaces) at high southern latitudes in the austral summer, which leads to biases in estimates of air-sea CO2 exchange. Furthermore, we show that the MSE-based constraint is consistent with an independent constraint on atmospheric mixing based on combining airborne and surface CO2 observations.

3.
Nature ; 586(7828): 248-256, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33028999

RESUMEN

Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations have contributed to stratospheric ozone depletion1 and climate change2, with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do not provide a full picture of N2O emissions, owing to their omission of natural sources and limitations in methodology for attributing anthropogenic sources. Here we present a global N2O inventory that incorporates both natural and anthropogenic sources and accounts for the interaction between nitrogen additions and the biochemical processes that control N2O emissions. We use bottom-up (inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and top-down (atmospheric inversion) approaches to provide a comprehensive quantification of global N2O sources and sinks resulting from 21 natural and human sectors between 1980 and 2016. Global N2O emissions were 17.0 (minimum-maximum estimates: 12.2-23.5) teragrams of nitrogen per year (bottom-up) and 16.9 (15.9-17.7) teragrams of nitrogen per year (top-down) between 2007 and 2016. Global human-induced emissions, which are dominated by nitrogen additions to croplands, increased by 30% over the past four decades to 7.3 (4.2-11.4) teragrams of nitrogen per year. This increase was mainly responsible for the growth in the atmospheric burden. Our findings point to growing N2O emissions in emerging economies-particularly Brazil, China and India. Analysis of process-based model estimates reveals an emerging N2O-climate feedback resulting from interactions between nitrogen additions and climate change. The recent growth in N2O emissions exceeds some of the highest projected emission scenarios3,4, underscoring the urgency to mitigate N2O emissions.


Asunto(s)
Óxido Nitroso/análisis , Óxido Nitroso/metabolismo , Agricultura , Atmósfera/química , Productos Agrícolas/metabolismo , Actividades Humanas , Internacionalidad , Nitrógeno/análisis , Nitrógeno/metabolismo
4.
Glob Chang Biol ; 29(15): 4298-4312, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37190869

RESUMEN

The recent rise in atmospheric methane (CH4 ) concentrations accelerates climate change and offsets mitigation efforts. Although wetlands are the largest natural CH4 source, estimates of global wetland CH4 emissions vary widely among approaches taken by bottom-up (BU) process-based biogeochemical models and top-down (TD) atmospheric inversion methods. Here, we integrate in situ measurements, multi-model ensembles, and a machine learning upscaling product into the International Land Model Benchmarking system to examine the relationship between wetland CH4 emission estimates and model performance. We find that using better-performing models identified by observational constraints reduces the spread of wetland CH4 emission estimates by 62% and 39% for BU- and TD-based approaches, respectively. However, global BU and TD CH4 emission estimate discrepancies increased by about 15% (from 31 to 36 TgCH4 year-1 ) when the top 20% models were used, although we consider this result moderately uncertain given the unevenly distributed global observations. Our analyses demonstrate that model performance ranking is subject to benchmark selection due to large inter-site variability, highlighting the importance of expanding coverage of benchmark sites to diverse environmental conditions. We encourage future development of wetland CH4 models to move beyond static benchmarking and focus on evaluating site-specific and ecosystem-specific variabilities inferred from observations.


Asunto(s)
Ecosistema , Humedales , Metano/análisis , Cambio Climático , Predicción , Dióxido de Carbono
5.
Nat Methods ; 16(11): 1169-1175, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31591580

RESUMEN

Human cortical organoids (hCOs), derived from human embryonic stem cells (hESCs), provide a platform to study human brain development and diseases in complex three-dimensional tissue. However, current hCOs lack microvasculature, resulting in limited oxygen and nutrient delivery to the inner-most parts of hCOs. We engineered hESCs to ectopically express human ETS variant 2 (ETV2). ETV2-expressing cells in hCOs contributed to forming a complex vascular-like network in hCOs. Importantly, the presence of vasculature-like structures resulted in enhanced functional maturation of organoids. We found that vascularized hCOs (vhCOs) acquired several blood-brain barrier characteristics, including an increase in the expression of tight junctions, nutrient transporters and trans-endothelial electrical resistance. Finally, ETV2-induced endothelium supported the formation of perfused blood vessels in vivo. These vhCOs form vasculature-like structures that resemble the vasculature in early prenatal brain, and they present a robust model to study brain disease in vitro.


Asunto(s)
Encéfalo/irrigación sanguínea , Células Madre Embrionarias Humanas/citología , Organoides/irrigación sanguínea , Ingeniería de Tejidos/métodos , Animales , Barrera Hematoencefálica , Células Cultivadas , Humanos , Ratones , Análisis de la Célula Individual , Factores de Transcripción/fisiología
6.
Glob Chang Biol ; 28(1): 182-200, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34553464

RESUMEN

The ongoing development of the Global Carbon Project (GCP) global methane (CH4 ) budget shows a continuation of increasing CH4 emissions and CH4 accumulation in the atmosphere during 2000-2017. Here, we decompose the global budget into 19 regions (18 land and 1 oceanic) and five key source sectors to spatially attribute the observed global trends. A comparison of top-down (TD) (atmospheric and transport model-based) and bottom-up (BU) (inventory- and process model-based) CH4 emission estimates demonstrates robust temporal trends with CH4 emissions increasing in 16 of the 19 regions. Five regions-China, Southeast Asia, USA, South Asia, and Brazil-account for >40% of the global total emissions (their anthropogenic and natural sources together totaling >270 Tg CH4  yr-1 in 2008-2017). Two of these regions, China and South Asia, emit predominantly anthropogenic emissions (>75%) and together emit more than 25% of global anthropogenic emissions. China and the Middle East show the largest increases in total emission rates over the 2000 to 2017 period with regional emissions increasing by >20%. In contrast, Europe and Korea and Japan show a steady decline in CH4 emission rates, with total emissions decreasing by ~10% between 2000 and 2017. Coal mining, waste (predominantly solid waste disposal) and livestock (especially enteric fermentation) are dominant drivers of observed emissions increases while declines appear driven by a combination of waste and fossil emission reductions. As such, together these sectors present the greatest risks of further increasing the atmospheric CH4 burden and the greatest opportunities for greenhouse gas abatement.


Asunto(s)
Atmósfera , Metano , Animales , China , Ganado , Metano/análisis , Océanos y Mares
7.
Glob Chang Biol ; 26(3): 1068-1084, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31828914

RESUMEN

Robust estimates of CO2 budget, CO2 exchanged between the atmosphere and terrestrial biosphere, are necessary to better understand the role of the terrestrial biosphere in mitigating anthropogenic CO2 emissions. Over the past decade, this field of research has advanced through understanding of the differences and similarities of two fundamentally different approaches: "top-down" atmospheric inversions and "bottom-up" biosphere models. Since the first studies were undertaken, these approaches have shown an increasing level of agreement, but disagreements in some regions still persist, in part because they do not estimate the same quantity of atmosphere-biosphere CO2 exchange. Here, we conducted a thorough comparison of CO2 budgets at multiple scales and from multiple methods to assess the current state of the science in estimating CO2 budgets. Our set of atmospheric inversions and biosphere models, which were adjusted for a consistent flux definition, showed a high level of agreement for global and hemispheric CO2 budgets in the 2000s. Regionally, improved agreement in CO2 budgets was notable for North America and Southeast Asia. However, large gaps between the two methods remained in East Asia and South America. In other regions, Europe, boreal Asia, Africa, South Asia, and Oceania, it was difficult to determine whether those regions act as a net sink or source because of the large spread in estimates from atmospheric inversions. These results highlight two research directions to improve the robustness of CO2 budgets: (a) to increase representation of processes in biosphere models that could contribute to fill the budget gaps, such as forest regrowth and forest degradation; and (b) to reduce sink-source compensation between regions (dipoles) in atmospheric inversion so that their estimates become more comparable. Advancements on both research areas will increase the level of agreement between the top-down and bottom-up approaches and yield more robust knowledge of regional CO2 budgets.


Asunto(s)
Dióxido de Carbono , Ecosistema , África , Asia , Europa (Continente) , América del Norte , América del Sur
8.
Phys Chem Chem Phys ; 19(38): 26330-26345, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28936513

RESUMEN

Novel approaches to boost quantum dot solar cell (QDSC) efficiencies are in demand. Herein, three strategies are used: (i) a hydrothermally synthesized TiO2-multiwalled carbon nanotube (MWCNT) composite instead of conventional TiO2, (ii) a counter electrode (CE) that has not been applied to QDSCs until now, namely, tin sulfide (SnS) nanoparticles (NPs) coated over a conductive carbon (C)-fabric, and (iii) a quasi-solid-state gel electrolyte composed of S2-, an inert polymer and TiO2 nanoparticles as opposed to a polysulfide solution based hole transport layer. MWCNTs by virtue of their high electrical conductivity and suitably positioned Fermi level (below the conduction bands of TiO2 and PbS) allow fast photogenerated electron injection into the external circuit, and this is confirmed by a higher efficiency of 6.3% achieved for a TiO2-MWCNT/PbS/ZnS based (champion) cell, compared to the corresponding TiO2/PbS/ZnS based cell (4.45%). Nanoscale current map analysis of TiO2 and TiO2-MWCNTs reveals the presence of narrowly spaced highly conducting domains in the latter, which equips it with an average current carrying capability greater by a few orders of magnitude. Electron transport and recombination resistances are lower and higher respectively for the TiO2-MWCNT/PbS/ZnS cell relative to the TiO2/PbS/ZnS cell, thus leading to a high performance cell. The efficacy of SnS/C-fabric as a CE is confirmed from the higher efficiency achieved in cells with this CE compared to the C-fabric based cells. Lower charge transfer and diffusional resistances, slower photovoltage decay, high electrical conductance and lower redox potential impart high catalytic activity to the SnS/C-fabric assembly for sulfide reduction and thus endow the TiO2-MWCNT/PbS/ZnS cell with a high open circuit voltage (0.9 V) and a large short circuit current density (∼20 mA cm-2). This study attempts to unravel how simple strategies can amplify QDSC performances.

9.
Proc Natl Acad Sci U S A ; 111(49): 17379-84, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25422438

RESUMEN

HCFC-22 (CHClF2) and HFC-134a (CH2FCF3) are two major gases currently used worldwide in domestic and commercial refrigeration and air conditioning. HCFC-22 contributes to stratospheric ozone depletion, and both species are potent greenhouse gases. In this work, we study in situ observations of HCFC-22 and HFC-134a taken from research aircraft over the Pacific Ocean in a 3-y span [HIaper-Pole-to-Pole Observations (HIPPO) 2009-2011] and combine these data with long-term ground observations from global surface sites [National Oceanic and Atmospheric Administration (NOAA) and Advanced Global Atmospheric Gases Experiment (AGAGE) networks]. We find the global annual emissions of HCFC-22 and HFC-134a have increased substantially over the past two decades. Emissions of HFC-134a are consistently higher compared with the United Nations Framework Convention on Climate Change (UNFCCC) inventory since 2000, by 60% more in recent years (2009-2012). Apart from these decadal emission constraints, we also quantify recent seasonal emission patterns showing that summertime emissions of HCFC-22 and HFC-134a are two to three times higher than wintertime emissions. This unforeseen large seasonal variation indicates that unaccounted mechanisms controlling refrigerant gas emissions are missing in the existing inventory estimates. Possible mechanisms enhancing refrigerant losses in summer are (i) higher vapor pressure in the sealed compartment of the system at summer high temperatures and (ii) more frequent use and service of refrigerators and air conditioners in summer months. Our results suggest that engineering (e.g., better temperature/vibration-resistant system sealing and new system design of more compact/efficient components) and regulatory (e.g., reinforcing system service regulations) steps to improve containment of these gases from working devices could effectively reduce their release to the atmosphere.

10.
J Nanosci Nanotechnol ; 16(3): 2582-6, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27455673

RESUMEN

Nanotechnology is an emerging paradigm for creating functional nanoscale materials for various biomedical applications. In this study, a new nanotechnology-based drug delivery method was developed using gold nanoparticles (GNPs) as a delivery vehicle to reduce adverse drug side effects. Fludarabine Phosphate is a commercial chemotherapy drug used in cancer treatment, and has ability to kill various cancer cells. KG-1 cell, a type of acute cancer leukemia cell, was selected as a proof-of-concept target in this study. Due to the small size of GNPs, they can help Fludarabine Phosphate enter cancer cells more efficiently and better interfere with DNA synthesis in the cancer cells. To enhance targeting ability, folic acid molecules were also covalently linked to GNPs, resulting in GNP-Fludarabine-folic acid (GNP-F/f). Compared to treatments with GNP-F or drugs on its own (Fludarabine Phosphate), the GNP-F/f achieves much improved cell-killing effects. The UV-Vis spectra results also revealed that the drugs had successfully bonded covalently to the GNPs. The higher cell-killing efficiency of GNP-F/f compared with GNP-Fludarabine (GNP-F) or drugs on their own further validates the effectiveness of both the vectors (GNPs) and folic acid in enhancing the drug delivery to the cancer cells. The MTT viability tests showed that the GNPs had no cytotoxicity.


Asunto(s)
Antineoplásicos/administración & dosificación , Oro/química , Neoplasias Hematológicas/tratamiento farmacológico , Nanopartículas del Metal , Fosfato de Vidarabina/análogos & derivados , Línea Celular Tumoral , Humanos , Microscopía Electrónica de Transmisión , Espectrofotometría Ultravioleta , Fosfato de Vidarabina/administración & dosificación
11.
J Nanosci Nanotechnol ; 16(3): 2668-76, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27455687

RESUMEN

A novel design of a laboratory built axially rotating collector (ARC) having capability to align electrospun nanofibers have been described. A detailed morphological comparison of such nanofibers orientation and their geometry is done using scanning electron microscopy (SEM). For comparison various polymeric solutions were electrospun on conventional static collector as well as ARC. The average diameter of polyvinyl alcohol (PVA) nanofibers was found to be 250 nm while polycaprolactone (PCL) nanofibers were found to be within a range of 600-800 nm. Conducting nanoparticles such as graphene and multi-walled carbon nanotubes (MWNTs) mixed with polymer solutions shown to have a significant influence on the overall geometry of these nanofibers and their diameter distribution. It is evident from the SEM analysis that both graphene and MWNTs in polymer solution play a crucial role in achieving a uniform diameter of nanofibers. Lastly, the formation of the aligned nanofibers using ARC has been mathematically modeled and the electromagnetic field governing the process has been simulated.


Asunto(s)
Nanofibras , Microscopía Electrónica de Rastreo , Poliésteres/química , Alcohol Polivinílico/química
12.
Environ Toxicol ; 31(9): 1091-102, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25689286

RESUMEN

With their unique structure and physicochemical properties, single\-walled carbon nanotubes (SWCNTs) have many potential new applications in medicine and industry. However, there is lack of detailed information concerning their impact on human health and the environment. The aim of this study was to assess the effects, after intraperitoneal injection of functionalized SWCNTs (f-SWCNT) on the induction of reactive oxygen species (ROS), frequency of structural chromosomal aberrations (SCA), frequency of micronuclei induction, mitotic index, and DNA damage in Swiss-Webster mice. Three doses of f-SWCNTs (0.25, 0.5, and 0.75 mg/kg) and two controls (negative and positive) were administered to mice, once a day for 5 days. Bone marrow and peripheral blood samples were collected 24 h after the last treatment following standard protocols. F-SWCNT exposure significantly enhanced ROS, increased (p < 0.05) the number of SCA and the frequency of micronucleated cells, increased DNA damage, and decreased the mitotic index in exposed groups compared to negative control. The scientific findings reported here suggest that purified f-SWCNT have the potential to induce oxidative stress mediated genotoxicity in Swiss-Webster mice at higher level of exposure. Further characterization of their systemic toxicity, genotoxicity, and carcinogenicity is also essential. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1091-1102, 2016.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Aberraciones Cromosómicas/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Células Cultivadas , Ensayo Cometa , Daño del ADN/efectos de los fármacos , Inyecciones Intraperitoneales , Masculino , Ratones , Microscopía Electrónica de Rastreo , Nanotubos de Carbono/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
13.
J Nanosci Nanotechnol ; 15(8): 6225-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26369230

RESUMEN

A novel nanocomposite has been developed using extracted cellulose from marine algae coated with conductive polypyrrole and graphene nanoplateletes. The nanocomposite fabricated via in situ polymerization was used as an electrode for a supercapacitor device. The nanocomposite material has been electrochemically characterized using cyclic voltammetry to test its potential to super-capacitive behavior. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 Fg-1 at the scan rate 50 mV s-1. Transmission electron microscope images show the polymerized polypyrrole -graphene coated cellulosic nanofibers. Scanning electron microscope images reveal an interesting "necklace" like beaded morphology on the cellulose fibers. It is observed that the necklace like structure start to disintegrate with the increase in graphene concentration. The open circuit voltage of the device with polypyrrole-graphene-cellulose electrode was found to be around 225 mV and that of the polypyrrole-cellulose device is only 53 mV without graphene. The results suggest marked improvement in the performance of the nanocomposite supercapacitor device upon graphene inclusion.


Asunto(s)
Celulosa/química , Chlorophyta/metabolismo , Suministros de Energía Eléctrica , Grafito/química , Nanocompuestos/química , Polímeros/química , Pirroles/química , Difusión , Capacidad Eléctrica , Conductividad Eléctrica , Electrodos , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales , Nanocompuestos/ultraestructura , Tamaño de la Partícula , Propiedades de Superficie
14.
Environ Eng Sci ; 31(6): 288-299, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24963270

RESUMEN

A potential ion-exchange material was developed from poly(acrylonitrile) fibers that were prepared by electrospinning followed by alkaline hydrolysis (to convert the nitrile group to the carboxylate functional group). Characterization studies performed on this material using X-ray photoelectron spectroscopy, scanning electron microscopy, Fourier-Transform infra-red spectroscopy, and ion chromatography confirmed the presence of ion-exchange functional group (carboxylate). Optimum hydrolysis conditions resulted in an ion-exchange capacity of 2.39 meq/g. Ion-exchange fibers were used in a packed-bed column to selectively remove heavy-metal cation from the background of a benign, competing cation at a much higher concentration. The material can be efficiently regenerated and used for multiple cycles of exhaustion and regeneration.

15.
Environ Sci Pollut Res Int ; 31(27): 39678-39689, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831145

RESUMEN

Carbon monoxide (CO) is a prominent air pollutant in cities, with far-reaching implications for both local air quality and global atmospheric chemistry. The long-term change in atmospheric CO levels at a specific location is influenced by a complex interplay of local emissions, atmospheric transport, and photochemical processes, making it a subject of considerable interest. This study presents an 8-year analysis (2014-2021) of in situ CO observations using a cutting-edge laser-based analyzer at an urban site in Ahmedabad, western India. The long-term observations reveal a subtle trend in CO levels, masked by contrasting year-to-year variations, particular after 2018, across distinct diurnal time windows. Mid-afternoon (12:00-16:00 h) CO levels, reflecting background and regional conditions, remained relatively stable over the study period. In contrast, evening (18:00-21:00 h) CO levels, influenced by local emissions, exhibited substantial inter-annual variability without discernible trends from 2014 to 2018. However, post-2018, evening CO levels showed a consistent decline, predating COVID-19 lockdown measures. This decline coincided with the nationwide adoption of Bharat stage IV emission standards and other measures aimed at reducing vehicular emissions. The COVID-19 lockdown in 2020 further resulted in a noteworthy 29% reduction in evening CO levels compared to the pre-lockdown (2014-2019) period, highlighting the potential for substantial CO reduction through stringent vehicular emission controls. The observed long-term changes in CO levels do not align with the decreasing emission estimated by various inventories from 2014 to 2018, suggesting a need for improved emission statistics in Indian urban regions. This study underscores the importance of ongoing continuous CO measurements in urban areas to inform policy efforts aimed at controlling atmospheric pollutants.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monóxido de Carbono , Ciudades , Monitoreo del Ambiente , Monóxido de Carbono/análisis , India , Contaminantes Atmosféricos/análisis , COVID-19 , Emisiones de Vehículos/análisis
16.
Front Aging Neurosci ; 16: 1350239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915346

RESUMEN

The glucagon-like peptide-1 receptor (GLP-1R) agonists reduce glycated hemoglobin in patients with type 2 diabetes. Mounting evidence indicates that the potential of GLP-1R agonists, mimicking a 30 amino acid ligand, GLP-1, extends to the treatment of neurodegenerative conditions, with a particular focus on Alzheimer's disease (AD). However, the mechanism that underlies regulation of GLP-1R availability in the brain with AD remains poorly understood. Here, using whole transcriptome RNA-Seq of the human postmortem caudate nucleus with AD and chronic hydrocephalus (CH) in the elderly, we found that GLP-1R and select mRNAs expressed in glucose dysmetabolism and dyslipidemia were significantly altered. Furthermore, we detected human RNA indicating a deficiency in doublecortin (DCX) levels and the presence of ferroptosis in the caudate nucleus impacted by AD. Using the genome data viewer, we assessed mutability of GLP-1R and 39 other genes by two factors associated with high mutation rates in chromosomes of four species. Surprisingly, we identified that nucleotide sizes of GLP-1R transcript exceptionally differed in all four species of humans, chimpanzees, rats, and mice by up to 6-fold. Taken together, the protein network database analysis suggests that reduced GLP-1R in the aged human brain is associated with glucose dysmetabolism, ferroptosis, and reduced DCX+ neurons, that may contribute to AD.

17.
Sci Total Environ ; 921: 171226, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402969

RESUMEN

The present study investigated the effects of land use/land cover (LU/LC) changes on atmospheric carbon dioxide (CO2) and methane (CH4) concentrations over the sub-urban region of India (Shadnagar) using continuous decadal CO2 and CH4in-situ data measured by the greenhouse gas analyser (GGA). Data was collected from 2013 to 2022 at a 1 Hz frequency. Analysis of the current study indicates that during pre-monsoon, the seasonal maximum of CO2 was 409.91 ± 9.26 ppm (µ ± 1σ), while the minimum during monsoon was about 401.64 ± 7.13 ppm. Post-monsoon has a high seasonal mean CH4 concentration of 2.08 ± 0.06 ppm, while monsoon has a low seasonal mean CH4 concentration of 1.88 ± 0.03 ppm. The primary classes, such as forest, crop, and built-up, were considered to estimate the effect of LU/LC changes on atmospheric CO2 and CH4 concentrations. Between 2005 and 2021, the study's results show that the built-up area at radii of 10 km, 20 km, and 50 km increased by 0.17 %, 0.10 %, and 0.4 %, respectively. While other LU/LC categories declined by 30 %, agriculture areas increased by 30 % on average. As a result, the CO2 and CH4 concentrations at the study site are increased by 6 % (26 ppm) and 6.5 % (140 ppb), respectively. The present study utilised the fire-based carbon emissions data from the Global Fire Emissions Database (GFED) to understand the impact on atmospheric CO2 and CH4. Analysis of the present work investigated the influence of transported airmass on CO2 and CH4 during the pre-monsoon and post-monsoon seasons using the HYSPLIT trajectories and found emissions were from the northwest, southeast, and northeast of the study site. Further, in-situ CO2 and CH4 records are compared against the MIROC4-ACTM simulation, and strong agreement was found with bias of 1.80 ppm and 0.98 ppb for CO2 and CH4, respectively.

18.
ACS Omega ; 8(24): 21358-21376, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37360447

RESUMEN

Graphene quantum dots (GQDs) are carbon-based, zero-dimensional nanomaterials and unique due to their astonishing optical, electronic, chemical, and biological properties. Chemical, photochemical, and biochemical properties of GQDs are intensely being explored for bioimaging, biosensing, and drug delivery. The synthesis of GQDs by top-down and bottom-up approaches, their chemical functionalization, bandgap engineering, and biomedical applications are reviewed here. Current challenges and future perspectives of GQDs are also presented.

19.
Prog Earth Planet Sci ; 10(1): 10, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36879643

RESUMEN

We developed a near-real-time estimation method for temporal changes in fossil fuel CO2 (FFCO2) emissions from China for 3 months [January, February, March (JFM)] based on atmospheric CO2 and CH4 observations on Hateruma Island (HAT, 24.06° N, 123.81° E) and Yonaguni Island (YON, 24.47° N, 123.01° E), Japan. These two remote islands are in the downwind region of continental East Asia during winter because of the East Asian monsoon. Previous studies have revealed that monthly averages of synoptic-scale variability ratios of atmospheric CO2 and CH4 (ΔCO2/ΔCH4) observed at HAT and YON in JFM are sensitive to changes in continental emissions. From the analysis based on an atmospheric transport model with all components of CO2 and CH4 fluxes, we found that the ΔCO2/ΔCH4 ratio was linearly related to the FFCO2/CH4 emission ratio in China because calculating the variability ratio canceled out the transport influences. Using the simulated linear relationship, we converted the observed ΔCO2/ΔCH4 ratios into FFCO2/CH4 emission ratios in China. The change rates of the emission ratios for 2020-2022 were calculated relative to those for the preceding 9-year period (2011-2019), during which relatively stable ΔCO2/ΔCH4 ratios were observed. These changes in the emission ratios can be read as FFCO2 emission changes under the assumption of no interannual variations in CH4 emissions and biospheric CO2 fluxes for JFM. The resulting average changes in the FFCO2 emissions in January, February, and March 2020 were 17 ± 8%, - 36 ± 7%, and - 12 ± 8%, respectively, (- 10 ± 9% for JFM overall) relative to 2011-2019. These results were generally consistent with previous estimates. The emission changes for January, February, and March were 18 ± 8%, - 2 ± 10%, and 29 ± 12%, respectively, in 2021 (15 ± 10% for JFM overall) and 20 ± 9%, - 3 ± 10%, and - 10 ± 9%, respectively, in 2022 (2 ± 9% for JFM overall). These results suggest that the FFCO2 emissions from China rebounded to the normal level or set a new high record in early 2021 after a reduction during the COVID-19 lockdown. In addition, the estimated reduction in March 2022 might be attributed to the influence of a new wave of COVID-19 infections in Shanghai. Supplementary Information: The online version contains supplementary material available at 10.1186/s40645-023-00542-6.

20.
Sci Rep ; 13(1): 13201, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580480

RESUMEN

Exposure to particulate matter less than 2.5 µm in diameter (PM2.5) is a cause of concern in cities and major emission regions of northern India. An intensive field campaign involving the states of Punjab, Haryana and Delhi national capital region (NCR) was conducted in 2022 using 29 Compact and Useful PM2.5 Instrument with Gas sensors (CUPI-Gs). Continuous observations show that the PM2.5 in the region increased gradually from < 60 µg m-3 in 6-10 October to up to 500 µg m-3 on 5-9 November, which subsequently decreased to about 100 µg m-3 in 20-30 November. Two distinct plumes of PM2.5 over 500 µg m-3 are tracked from crop residue burning in Punjab to Delhi NCR on 2-3 November and 10-11 November with delays of 1 and 3 days, respectively. Experimental campaign demonstrates the advantages of source region observations to link agricultural waste burning and air pollution at local to regional scales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA