Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835328

RESUMEN

ATP-dependent SWI/SNF chromatin remodelling complexes are conserved multi-subunit assemblies that control genome activity. Functions of SWI/SNF complexes in plant development and growth have been well established, but the architecture of particular assemblies is unclear. In this study, we elucidate the organization of Arabidopsis SWI/SNF complexes formed around a BRM catalytic subunit, and define the requirement of bromodomain-containing proteins BRD1/2/13 for the formation and stability of the entire complex. Using affinity purification followed by mass spectrometry, we identify a set of BRM-associated subunits and demonstrate that the BRM complexes strongly resemble mammalian non-canonical BAF complexes. Furthermore, we identify BDH1 and 2 proteins as components of the BRM complex and, using mutant analyses, show that BDH1/2 are important for vegetative and generative development, as well as hormonal responses. We further show that BRD1/2/13 represent unique subunits of the BRM complexes, and their depletion severely affects the integrity of the complex, resulting in the formation of residual assemblies. Finally, analyses of BRM complexes after proteasome inhibition revealed the existence of a module consisting of the ATPase, ARP, and BDH proteins, assembled with other subunits in a BRD-dependent manner. Together, our results suggest modular organization of plant SWI/SNF complexes and provide a biochemical explanation for mutant phenotypes.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Arabidopsis , Arabidopsis , Adenosina Trifosfatasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ensamble y Desensamble de Cromatina , Factores de Transcripción/metabolismo
2.
Nucleic Acids Res ; 45(6): 3116-3129, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-27994035

RESUMEN

ATP-dependent chromatin remodeling complexes are important regulators of gene expression in Eukaryotes. In plants, SWI/SNF-type complexes have been shown critical for transcriptional control of key developmental processes, growth and stress responses. To gain insight into mechanisms underlying these roles, we performed whole genome mapping of the SWI/SNF catalytic subunit BRM in Arabidopsis thaliana, combined with transcript profiling experiments. Our data show that BRM occupies thousands of sites in Arabidopsis genome, most of which located within or close to genes. Among identified direct BRM transcriptional targets almost equal numbers were up- and downregulated upon BRM depletion, suggesting that BRM can act as both activator and repressor of gene expression. Interestingly, in addition to genes showing canonical pattern of BRM enrichment near transcription start site, many other genes showed a transcription termination site-centred BRM occupancy profile. We found that BRM-bound 3΄ gene regions have promoter-like features, including presence of TATA boxes and high H3K4me3 levels, and possess high antisense transcriptional activity which is subjected to both activation and repression by SWI/SNF complex. Our data suggest that binding to gene terminators and controlling transcription of non-coding RNAs is another way through which SWI/SNF complex regulates expression of its targets.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Regiones Promotoras Genéticas , Regiones Terminadoras Genéticas , Región de Flanqueo 3' , Arabidopsis/metabolismo , Sitios de Unión , ARN sin Sentido/biosíntesis , ARN Mensajero/biosíntesis , Transcripción Genética
3.
PLoS One ; 8(3): e58588, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23536800

RESUMEN

SWI/SNF chromatin remodeling complexes perform a pivotal function in the regulation of eukaryotic gene expression. Arabidopsis (Arabidopsis thaliana) mutants in major SWI/SNF subunits display embryo-lethal or dwarf phenotypes, indicating their critical role in molecular pathways controlling development and growth. As gibberellins (GA) are major positive regulators of plant growth, we wanted to establish whether there is a link between SWI/SNF and GA signaling in Arabidopsis. This study revealed that in brm-1 plants, depleted in SWI/SNF BRAHMA (BRM) ATPase, a number of GA-related phenotypic traits are GA-sensitive and that the loss of BRM results in markedly decreased level of endogenous bioactive GA. Transcriptional profiling of brm-1 and the GA biosynthesis mutant ga1-3, as well as the ga1-3/brm-1 double mutant demonstrated that BRM affects the expression of a large set of GA-responsive genes including genes responsible for GA biosynthesis and signaling. Furthermore, we found that BRM acts as an activator and directly associates with promoters of GA3ox1, a GA biosynthetic gene, and SCL3, implicated in positive regulation of the GA pathway. Many GA-responsive gene expression alterations in the brm-1 mutant are likely due to depleted levels of active GAs. However, the analysis of genetic interactions between BRM and the DELLA GA pathway repressors, revealed that BRM also acts on GA-responsive genes independently of its effect on GA level. Given the central position occupied by SWI/SNF complexes within regulatory networks controlling fundamental biological processes, the identification of diverse functional intersections of BRM with GA-dependent processes in this study suggests a role for SWI/SNF in facilitating crosstalk between GA-mediated regulation and other cellular pathways.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Dominio Catalítico , Proteínas Cromosómicas no Histona/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/antagonistas & inhibidores , Anotación de Secuencia Molecular , Mutación , Fenotipo , Regiones Promotoras Genéticas , Carácter Cuantitativo Heredable , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/química , Triazoles/farmacología
4.
Cytoskeleton (Hoboken) ; 67(5): 322-37, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20196075

RESUMEN

MglA, a 22-kDa protein related to monomeric GTPases, is required for the normal operation of the A (Adventurous) and S (Social) motility and for multicellular development of Myxococcus xanthus. To determine how MglA controls A- and S-motility, MglA was assayed biochemically and its cellular location was determined. His-tagged MglA hydrolyzed GTP slowly in vitro at a rate nearly identical to that of Ras showing that MglA has GTPase activity. Immunofluorescence microscopy of fixed cells from liquid showed that MglA was associated with helical track similar to the MreB spiral that spanned the length of the cell. The distribution pattern of MglA depended on the type of surface from which cells were harvested. In cells gliding on 1.5% (w/v) agar, the helical pattern gave way to punctate clusters of MglA-Yfp at the poles and along the long axis (lateral clusters). The lateral clusters emerged near the leading pole as the cell advanced coincident with a decrease in the intensity of the MglA-Yfp cluster at the leading pole. Newly formed lateral clusters remained fixed with regard to the substratum as the cell moved forward, similar to focal adhesion complexes described for AglZ, a protein partner of MglA. Lateral clusters did not form in cells gliding in methylcellulose, a polymer that stimulates S-motility at low cell density; rather MglA-Yfp was diffuse in the cytoplasm and more concentrated at the poles. The results suggest that conditions that favor S-motility prevent the formation of lateral clusters of MglA, which are associated with A-motility functions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Myxococcus xanthus/metabolismo , Proteínas Bacterianas/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Immunoblotting , Proteínas Motoras Moleculares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA