Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(1): 216-228.e21, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31204103

RESUMEN

The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/inmunología , Eritrocitos/parasitología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Adolescente , Adulto , Animales , Sitios de Unión , Proteínas Portadoras/inmunología , Reacciones Cruzadas/inmunología , Epítopos/inmunología , Femenino , Células HEK293 , Voluntarios Sanos , Humanos , Malaria Falciparum/parasitología , Masculino , Merozoítos/fisiología , Persona de Mediana Edad , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/inmunología , Conejos , Ratas , Ratas Sprague-Dawley , Adulto Joven
2.
Am J Epidemiol ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885957

RESUMEN

Studies of SARS-CoV-2 incidence are important for response to continued transmission and future pandemics. We followed a rural community cohort with broad age representation with active surveillance for SARS-CoV-2 identification from November 2020 through July 2022. Participants provided serum specimens at regular intervals and following SARS-CoV-2 infection or vaccination. We estimated the incidence of SARS-CoV-2 infection identified by study RT-PCR, electronic health record documentation or self-report of a positive test, or serology. We also estimated the seroprevalence of SARS-CoV-2 spike and nucleocapsid antibodies measured by ELISA. Overall, 65% of the cohort had ≥1 SARS-CoV-2 infection by July 2022, and 19% of those with primary infection were reinfected. Infection and vaccination contributed to high seroprevalence, 98% (95% CI: 95%, 99%) of participants were spike or nucleocapsid seropositive at the end of follow-up. Among those seropositive, 82% were vaccinated. Participants were more likely to be seropositive to spike than nucleocapsid following infection. Infection among seropositive individuals could be identified by increases in nucleocapsid, but not spike, ELISA optical density values. Nucleocapsid antibodies waned more quickly after infection than spike antibodies. High levels of SARS-CoV-2 population immunity, as found in this study, are leading to changing epidemiology necessitating ongoing surveillance and policy evaluation.

4.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36142559

RESUMEN

Whole-blood-derived transcriptional profiling is widely used in biomarker discovery, immunological research, and therapeutic development. Traditional molecular and high-throughput transcriptomic platforms, including molecular assays with quantitative PCR (qPCR) and RNA-sequencing (RNA-seq), are dependent upon high-quality and intact RNA. However, collecting high-quality RNA from field studies in remote tropical locations can be challenging due to resource restrictions and logistics of post-collection processing. The current study tested the relative performance of the two most widely used whole-blood RNA collection systems, PAXgene® and Tempus™, in optimal laboratory conditions as well as suboptimal conditions in tropical field sites, including the effects of extended storage times and high storage temperatures. We found that Tempus™ tubes maintained a slightly higher RNA quantity and integrity relative to PAXgene® tubes at suboptimal tropical conditions. Both PAXgene® and Tempus™ tubes gave similar RNA purity (A260/A280). Additionally, Tempus™ tubes preferentially maintained the stability of mRNA transcripts for two reference genes tested, Succinate dehydrogenase complex, subunit A (SDHA) and TATA-box-binding protein (TBP), even when RNA quality decreased with storage length and temperature. Both tube types preserved the rRNA transcript 18S ribosomal RNA (18S) equally. Our results suggest that Tempus™ blood RNA collection tubes are preferable to PAXgene® for whole-blood collection in suboptimal tropical conditions for RNA-based studies in resource-limited settings.


Asunto(s)
ARN , Succinato Deshidrogenasa , Biomarcadores , Recolección de Muestras de Sangre/métodos , Perfilación de la Expresión Génica/métodos , ARN/genética , ARN Mensajero/genética , ARN Ribosómico 18S/genética , Succinato Deshidrogenasa/genética , Proteína de Unión a TATA-Box/genética , Temperatura
5.
Gut ; 69(9): 1592-1597, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32499303

RESUMEN

OBJECTIVE: Treatment options for non-hospitalised patients with coronavirus disease 2019 (COVID-19) to reduce morbidity, mortality and spread of the disease are an urgent global need. The over-the-counter histamine-2 receptor antagonist famotidine is a putative therapy for COVID-19. We quantitively assessed longitudinal changes in patient reported outcome measures in non-hospitalised patients with COVID-19 who self-administered high-dose famotidine orally. DESIGN: Patients were enrolled consecutively after signing written informed consent. Data on demographics, COVID-19 diagnosis, famotidine use, drug-related side effects, temperature measurements, oxygen saturations and symptom scores were obtained using questionnaires and telephone interviews. Based on a National Institute of Health (NIH)-endorsed Protocol to research Patient Experience of COVID-19, we collected longitudinal severity scores of five symptoms (cough, shortness of breath, fatigue, headaches and anosmia) and general unwellness on a four-point ordinal scale modelled on performance status scoring. All data are reported at the patient level. Longitudinal combined normalised symptom scores were statistically compared. RESULTS: Ten consecutive patients with COVID-19 who self-administered high-dose oral famotidine were identified. The most frequently used famotidine regimen was 80 mg three times daily (n=6) for a median of 11 days (range: 5-21 days). Famotidine was well tolerated. All patients reported marked improvements of disease related symptoms after starting famotidine. The combined symptom score improved significantly within 24 hours of starting famotidine and peripheral oxygen saturation (n=2) and device recorded activity (n=1) increased. CONCLUSIONS: The results of this case series suggest that high-dose oral famotidine is well tolerated and associated with improved patient-reported outcomes in non-hospitalised patients with COVID-19.


Asunto(s)
Infecciones por Coronavirus , Monitoreo de Drogas/métodos , Famotidina/administración & dosificación , Pandemias , Neumonía Viral , Evaluación de Síntomas/métodos , Adulto , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/fisiopatología , Relación Dosis-Respuesta a Droga , Femenino , Antagonistas de los Receptores H2 de la Histamina/administración & dosificación , Humanos , Masculino , Persona de Mediana Edad , Oximetría/métodos , Medición de Resultados Informados por el Paciente , Neumonía Viral/diagnóstico , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/fisiopatología , Estudios Retrospectivos , SARS-CoV-2 , Autoadministración , Resultado del Tratamiento
6.
Euro Surveill ; 24(6)2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30755292

RESUMEN

BACKGROUND: Influenza A(H3N2) virus rapidly evolves to evade human immune responses, resulting in changes in the antigenicity of haemagglutinin (HA). Therefore, continuous genetic and antigenic analyses of A(H3N2) virus are necessary to detect antigenic mutants as quickly as possible. AIM: We attempted to phylogenetically and antigenically capture the epidemic trend of A(H3N2) virus infection in Yokohama, Japan during the 2016/17 and 2017/18 influenza seasons. METHODS: We determined the HA sequences of A(H3N2) viruses detected in Yokohama, Japan during the 2016/17 and 2017/18 influenza seasons to identify amino acid substitutions and the loss or gain of potential N-glycosylation sites in HA, both of which potentially affect the antigenicity of HA. We also examined the antigenicity of isolates using ferret antisera obtained from experimentally infected ferrets. RESULTS: Influenza A(H3N2) viruses belonging to six clades (clades 3C.2A1, 3C.2A1a, 3C.2A1b, 3C.2A2, 3C.2A3 and 3C.2A4) were detected during the 2016/17 influenza season, whereas viruses belonging to two clades (clades 3C.2A1b and 3C.2A2) dominated during the 2017/18 influenza season. The isolates in clades 3C.2A1a and 3C.2A3 lost one N-linked glycosylation site in HA relative to other clades. Antigenic analysis revealed antigenic differences among clades, especially clade 3C.2A2 and 3C.2A4 viruses, which showed distinct antigenic differences from each other and from other clades in the antigenic map. CONCLUSION: Multiple clades, some of which differed antigenically from others, co-circulated in Yokohama, Japan during the 2016/17 and 2017/18 influenza seasons.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/diagnóstico , ARN Viral/genética , Epidemias , Variación Genética , Hemaglutininas/genética , Humanos , Gripe Humana/epidemiología , Japón/epidemiología , Datos de Secuencia Molecular , Filogenia , ARN Viral/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estaciones del Año , Análisis de Secuencia de ADN
7.
Chemistry ; 24(39): 9892-9902, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29707835

RESUMEN

Adjuvant development and understanding the physicochemical properties of particles and interpreting the subsequent immunological responses is a challenge faced by many researchers in the vaccine field. We synthesized and investigated the physicochemical properties and immunogenicity of a library of multiple epitope self-adjuvant lipopeptides in a novel asymmetric arrangement. Vaccine candidates were synthesized using a combination of solid-phase peptide synthesis and copper-mediated click chemistry. In vivo studies showed that vaccine constructs containing a single OVA CD8+ T-cell epitope and two N-terminally located C16 lipid moieties were more effective at generating robust cellular immune responses compared to the same molecule containing multiple copies of the OVA CD8+ T-cell epitope with or without the C16 moieties. Furthermore, attachment of the two C16 lipids to the N-terminus provoked formation of long ß-sheet fibrils and was shown to induce a higher CD8+ donor T-cell frequency and IFN-γ secretion, compared to vaccine constructs with an internal lipid placement. A regression analysis indicated that particle secondary structure had a significant impact on CD8+ donor T-cell frequency and cytolytic activity. In addition, IFN-γ production was influenced significantly by particle shape. The findings of this research will impact the future design of a vaccine intended to elicit cellular immune responses.


Asunto(s)
Adyuvantes Inmunológicos/química , Epítopos de Linfocito T/inmunología , Lipopéptidos/química , Linfocitos T/inmunología , Animales , Ratones
8.
Bioconjug Chem ; 27(3): 533-48, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26735314

RESUMEN

Present on the surface of antigen presenting cells (APCs), the mannose receptor (MR) has long been recognized as a front-line receptor in pathogen recognition. During the past decade many attempts have been made to target this receptor for applications including vaccine and drug development. In the present study, a library of vaccine constructs comprising fluorescently labeled mannosylated lipid-dendrimers that contained the ovalbumin CD4(+) epitope, OVA(323-339), as the model peptide antigen were synthesized using fluorenylmethyloxycarbonyl (Fmoc) solid phase peptide synthesis (SPPS). The vaccine constructs were designed with an alanine spacer between the O-linked mannose moieties to investigate the impact of distance between the mannose units on receptor-mediated uptake and/or binding in APCs. Uptake studies performed on F4/80(+) and CD11c(+) cells showed significant uptake and/or binding for lipopeptides containing mannose, and also the lipopeptide without mannose when compared to the control peptides (peptide with no lipid and peptide with no mannose and no lipid). Furthermore, mannan inhibition assays demonstrated that uptake of the mannosylated and lipidated peptides was receptor mediated. To address the specificity of receptor uptake, surface plasmon resonance studies were performed using biacore technology and confirmed high affinity of the mannosylated and lipidated vaccine constructs toward the MR. These studies confirm that both mannose and lipid moieties play significant roles in receptor-mediated uptake on APCs, potentially facilitating vaccine development.


Asunto(s)
Lectinas Tipo C/metabolismo , Lipopéptidos/síntesis química , Lectinas de Unión a Manosa/metabolismo , Manosa/química , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Células Presentadoras de Antígenos/metabolismo , Lipopéptidos/química , Lipopéptidos/metabolismo , Receptor de Manosa
9.
Syst Biol ; 64(2): 169-86, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25239212

RESUMEN

Paleontological systematics relies heavily on morphological data that have undergone decay and fossilization. Here, we apply a heuristic means to assess how a fossil's incompleteness detracts from inferring its phylogenetic relationships. We compiled a phylogenetic matrix for primates and simulated the extinction of living species by deleting an extant taxon's molecular data and keeping only those morphological characters present in actual fossils. The choice of characters present in a given living taxon (the subject) was defined by those present in a given fossil (the template). By measuring congruence between a well-corroborated phylogeny to those incorporating artificial fossils, and by comparing real vs. random character distributions and states, we tested the information content of paleontological datasets and determined if extinction of a living species leads to bias in phylogeny reconstruction. We found a positive correlation between fossil completeness and topological congruence. Real fossil templates sampled for 36 or more of the 360 available morphological characters (including dental) performed significantly better than similarly complete templates with random states. Templates dominated by only one partition performed worse than templates with randomly sampled characters across partitions. The template based on the Eocene primate Darwinius masillae performs better than most other templates with a similar number of sampled characters, likely due to preservation of data across multiple partitions. Our results support the interpretation that Darwinius is strepsirhine, not haplorhine, and suggest that paleontological datasets are reliable in primate phylogeny reconstruction.


Asunto(s)
Fósiles , Filogenia , Primates/clasificación , Animales , Extinción Biológica , Paleontología/normas , Primates/anatomía & histología
10.
Eur J Immunol ; 43(10): 2707-17, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23794196

RESUMEN

CD103⁺ dermal dendritic cells (dDCs) are a recently described DC subset of the skin shown to be the principal migratory DCs capable of efficiently cross-presenting antigens and activating CD8⁺ T cells. Harnessing their activity would promote vaccine efficacy, but it has been unclear how this can be achieved. We tested a panel of adjuvants for their ability to affect dDCs. In comparison to the other adjuvants tested, the capacity of cholera toxin (CT) to induce the migration of dDCs was unique. Within 24 h of CT injection, large numbers of highly activated dDCs (including CD103⁺ dDCs) migrated to the draining lymph nodes and cross-presented coinjected antigens, potently activating naïve CD8⁺ T cells. Peptide vaccines adjuvanted with CT induced T-cell responses uniquely characterized by dynamic cytokine responses including the production of IL-2, and such vaccines were protective in situations reliant on CD8⁺ T-cell responses, including liver-stage Plasmodium challenge, or tumor challenge. This study is the first to examine the effects of adjuvants on CD103⁺ dDCs and identifies CT as a prototypical adjuvant for the activation of CD103⁺ dDCs, opening the way to development of vaccines and adjuvants that specifically target dDCs and generate effective CD8⁺ T-cell responses.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Linfocitos T CD8-positivos/inmunología , Movimiento Celular/inmunología , Toxina del Cólera/inmunología , Células de Langerhans/inmunología , Animales , Antígenos CD/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Toxina del Cólera/administración & dosificación , Reactividad Cruzada/efectos de los fármacos , Humanos , Inyecciones Subcutáneas , Cadenas alfa de Integrinas/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Plasmodium/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
11.
EBioMedicine ; 101: 105013, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364702

RESUMEN

BACKGROUND: Influenza viruses continually acquire mutations in the antigenic epitopes of their major viral antigen, the surface glycoprotein haemagglutinin (HA), allowing evasion from immunity in humans induced upon prior influenza virus infections or vaccinations. Consequently, the influenza strains used for vaccine production must be updated frequently. METHODS: To better understand the antigenic evolution of influenza viruses, we introduced random mutations into the HA head region (where the immunodominant epitopes are located) of a pandemic H1N1 (H1N1pdm) virus from 2015 and incubated it with various human sera collected in 2015-2016. Mutants not neutralized by the human sera were sequenced and further characterized for their haemagglutination inhibition (HI) titers with human sera and with ferret sera raised to H1N1pdm viruses from 2009 to 2015. FINDINGS: The largest antigenic changes were conferred by mutations at HA amino acid position 187; interestingly, these antigenic changes were recognized by human, but not by ferret serum. H1N1pdm viruses with amino acid changes at position 187 were very rare until the end of 2018, but have become more frequent since; in fact, the D187A amino acid change is one of the defining changes of clade 6B.1A.5a.1 viruses, which emerged in 2019. INTERPRETATION: Our findings indicate that amino acid substitutions in H1N1pdm epitopes may be recognized by human sera, but not by homologous ferret sera. FUNDING: This project was supported by funding from the NIAID-funded Center for Research on Influenza Pathogenesis (CRIP, HHSN272201400008C).


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Animales , Hurones , Subtipo H1N1 del Virus de la Influenza A/genética , Epítopos , Aminoácidos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/química
12.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38370810

RESUMEN

Predicting T cell receptor (TCR) activation is challenging due to the lack of both unbiased benchmarking datasets and computational methods that are sensitive to small mutations to a peptide. To address these challenges, we curated a comprehensive database encompassing complete single amino acid mutational assays of 10,750 TCR-peptide pairs, centered around 14 immunogenic peptides against 66 TCRs. We then present an interpretable Bayesian model, called BATMAN, that can predict the set of peptides that activates a TCR. When validated on our database, BATMAN outperforms existing methods by 20% and reveals important biochemical predictors of TCR-peptide interactions.

13.
EBioMedicine ; 101: 105034, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38408394

RESUMEN

BACKGROUND: In 2022 and 2023, novel reassortant H3N8 influenza viruses infected three people, marking the first human infections with viruses of this subtype. METHODS: Here, we generated one of these viruses (A/Henan/4-10CNIC/2022; hereafter called A/Henan/2022 virus) by using reverse genetics and characterized it. FINDINGS: In intranasally infected mice, reverse genetics-generated A/Henan/2022 virus caused weight loss in all five animals (one of which had to be euthanized) and replicated efficiently in the respiratory tract. Intranasal infection of ferrets resulted in minor weight loss and moderate fever but no mortality. Reverse genetics-generated A/Henan/2022 virus replicated efficiently in the upper respiratory tract of ferrets but was not detected in the lungs. Virus transmission via respiratory droplets occurred in one of four pairs of ferrets. Deep-sequencing of nasal swab samples from inoculated and exposed ferrets revealed sequence polymorphisms in the haemagglutinin protein that may affect receptor-binding specificity. We also tested 90 human sera for neutralizing antibodies against reverse genetics-generated A/Henan/2022 virus and found that some of them possessed neutralizing antibody titres, especially sera from older donors with likely exposure to earlier human H3N2 viruses. INTERPRETATION: Our data demonstrate that reverse genetics-generated A/Henan/2022 virus is a low pathogenic influenza virus (of avian influenza virus descent) with some antigenic resemblance to older human H3N2 viruses and limited respiratory droplet transmissibility in ferrets. FUNDING: This work was supported by the Japan Program for Infectious Diseases Research and Infrastructure (JP23wm0125002), and the Japan Initiative for World-leading Vaccine Research and Development Centers (JP233fa627001) from the Japan Agency for Medical Research and Development (AMED).


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Animales , Ratones , Subtipo H3N2 del Virus de la Influenza A/genética , Hurones , Pulmón/patología , Pérdida de Peso
14.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38077028

RESUMEN

T cell receptor (TCR) repertoire diversity enables the orchestration of antigen-specific immune responses against the vast space of possible pathogens. Identifying TCR/antigen binding pairs from the large TCR repertoire and antigen space is crucial for biomedical research. Here, we introduce copepodTCR, an open-access tool for the design and interpretation of high-throughput experimental assays to determine TCR specificity. copepodTCR implements a combinatorial peptide pooling scheme for efficient experimental testing of T cell responses against large overlapping peptide libraries, useful for "deorphaning" TCRs of unknown specificity. The scheme detects experimental errors and, coupled with a hierarchical Bayesian model for unbiased results interpretation, identifies the response-eliciting peptide for a TCR of interest out of hundreds of peptides tested using a simple experimental set-up. We experimentally validated our approach on a library of 253 overlapping peptides covering the SARS-CoV-2 spike protein. We provide experimental guides for efficient design of larger screens covering thousands of peptides which will be crucial for the identification of antigen-specific T cells and their targets from limited clinical material.

15.
Viruses ; 16(3)2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38543733

RESUMEN

Avian influenza viruses of the H6 subtype are prevalent in wild ducks and likely play an important role in the ecology of influenza viruses through reassortment with other avian influenza viruses. Yet, only 152 Vietnamese H6 virus sequences were available in GISAID (Global Initiative on Sharing All Influenza Data) prior to this study with the most recent sequences being from 2018. Through surveillance in Vietnamese live bird markets from 2018 to 2021, we identified 287 samples containing one or several H6 viruses and other influenza A virus subtypes, demonstrating a high rate of co-infections among birds in Vietnamese live bird markets. For the 132 H6 samples with unique influenza virus sequences, we conducted phylogenetic and genetic analyses. Most of the H6 viruses were similar to each other and closely related to other H6 viruses; however, signs of reassortment with other avian influenza viruses were evident. At the genetic level, the Vietnamese H6 viruses characterized in our study encode a single basic amino acid at the HA cleavage site, consistent with low pathogenicity in poultry. The Vietnamese H6 viruses analyzed here possess an amino acid motif in HA that confers binding to both avian- and human-type receptors on host cells, consistent with their ability to infect mammals. The frequent detection of H6 viruses in Vietnamese live bird markets, the high rate of co-infections of birds with different influenza viruses, and the dual receptor-binding specificity of these viruses warrant their close monitoring for potential infection and spread among mammals.


Asunto(s)
Coinfección , Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Humanos , Gripe Aviar/epidemiología , Filogenia , Vietnam/epidemiología , Pollos , Enfermedades de las Aves de Corral/epidemiología , Aves de Corral , Mamíferos
16.
EBioMedicine ; 103: 105103, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574407

RESUMEN

BACKGROUND: World Health Organisation (WHO) and USA Centers for Disease Control and Prevention (U.S. CDC) recommendations now allow simultaneous administration of COVID-19 and other vaccines. We compared antibody responses after coadministration of influenza and bivalent COVID-19 vaccines in the same (ipsilateral) arm vs. different (contralateral) arms. METHODS: Pre- and post-vaccination serum samples from individuals in the Prospective Assessment of COVID-19 in a Community (PACC) cohort were used to conduct haemaglutination inhibition (HI) assays with the viruses in the 2022-2023 seasonal influenza vaccine and focus reduction neutralisation tests (FRNT) using a BA.5 SARS-CoV-2 virus. The effect of ipsilateral vs. contralateral vaccination on immune responses was inferred in a model that accounted for higher variance in vaccine responses at lower pre-vaccination titers. FINDINGS: Ipsilateral vaccination did not cause higher influenza vaccine responses compared to contralateral vaccination. The response to SARS-CoV-2 was slightly increased in the ipsilateral group, but equivalence was not excluded. INTERPRETATION: Coadministration of influenza and bivalent COVID-19 vaccines in the same arm or different arms did not strongly influence the antibody response to either vaccine. FUNDING: This work was supported by the U.S. CDC (grant number: 75D30120C09259).


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Vacunas contra la Influenza , Gripe Humana , SARS-CoV-2 , Humanos , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , COVID-19/inmunología , SARS-CoV-2/inmunología , Masculino , Femenino , Persona de Mediana Edad , Gripe Humana/prevención & control , Gripe Humana/inmunología , Adulto , Formación de Anticuerpos/inmunología , Vacunación/métodos , Anciano , Estudios Prospectivos , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología
17.
J Pediatric Infect Dis Soc ; 13(1): 100-104, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38142128

RESUMEN

We assessed serum neutralization of Omicron BA.5 in children following SARS-CoV-2 infection during the Delta or Omicron BA.1/BA.2 variant period. Convalescent BA.5 titers were higher following infections during the Omicron BA.1/BA.2 vs Delta variant period, and in vaccinated vs unvaccinated children. Titers against BA.5 did not differ by age group.


Asunto(s)
COVID-19 , Niño , Humanos , SARS-CoV-2 , Anticuerpos Antivirales
18.
Nat Commun ; 15(1): 4857, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849365

RESUMEN

Reticulocyte-binding protein homologue 5 (RH5), a leading blood-stage Plasmodium falciparum malaria vaccine target, interacts with cysteine-rich protective antigen (CyRPA) and RH5-interacting protein (RIPR) to form an essential heterotrimeric "RCR-complex". We investigate whether RCR-complex vaccination can improve upon RH5 alone. Using monoclonal antibodies (mAbs) we show that parasite growth-inhibitory epitopes on each antigen are surface-exposed on the RCR-complex and that mAb pairs targeting different antigens can function additively or synergistically. However, immunisation of female rats with the RCR-complex fails to outperform RH5 alone due to immuno-dominance of RIPR coupled with inferior potency of anti-RIPR polyclonal IgG. We identify that all growth-inhibitory antibody epitopes of RIPR cluster within the C-terminal EGF-like domains and that a fusion of these domains to CyRPA, called "R78C", combined with RH5, improves the level of in vitro parasite growth inhibition compared to RH5 alone. These preclinical data justify the advancement of the RH5.1 + R78C/Matrix-M™ vaccine candidate to Phase 1 clinical trial.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Vacunas contra la Malaria , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/administración & dosificación , Animales , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Femenino , Malaria Falciparum/prevención & control , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Antígenos de Protozoos/inmunología , Ratas , Anticuerpos Antiprotozoarios/inmunología , Anticuerpos Monoclonales/inmunología , Humanos , Epítopos/inmunología , Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo
19.
Cell Rep Med ; 5(7): 101654, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39019011

RESUMEN

Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage malaria vaccine antigen target, currently in a phase 2b clinical trial as a full-length soluble protein/adjuvant vaccine candidate called RH5.1/Matrix-M. We identify that disordered regions of the full-length RH5 molecule induce non-growth inhibitory antibodies in human vaccinees and that a re-engineered and stabilized immunogen (including just the alpha-helical core of RH5) induces a qualitatively superior growth inhibitory antibody response in rats vaccinated with this protein formulated in Matrix-M adjuvant. In parallel, bioconjugation of this immunogen, termed "RH5.2," to hepatitis B surface antigen virus-like particles (VLPs) using the "plug-and-display" SpyTag-SpyCatcher platform technology also enables superior quantitative antibody immunogenicity over soluble protein/adjuvant in vaccinated mice and rats. These studies identify a blood-stage malaria vaccine candidate that may improve upon the current leading soluble protein vaccine candidate RH5.1/Matrix-M. The RH5.2-VLP/Matrix-M vaccine candidate is now under evaluation in phase 1a/b clinical trials.


Asunto(s)
Anticuerpos Antiprotozoarios , Vacunas contra la Malaria , Plasmodium falciparum , Proteínas Protozoarias , Vacunas de Partículas Similares a Virus , Animales , Vacunas contra la Malaria/inmunología , Anticuerpos Antiprotozoarios/inmunología , Plasmodium falciparum/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Humanos , Ratones , Proteínas Protozoarias/inmunología , Ratas , Malaria Falciparum/prevención & control , Malaria Falciparum/inmunología , Antígenos de Protozoos/inmunología , Femenino , Proteínas Portadoras/inmunología , Ratones Endogámicos BALB C
20.
Vaccine ; 41(2): 590-597, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36517323

RESUMEN

Mutations accumulate in influenza A virus proteins, especially in the main epitopes on the virus surface glycoprotein hemagglutinin (HA). For influenza A(H3N2) viruses, in particular, the antigenicity of their HA has altered since their emergence in 1968, requiring changes of vaccine strains every few years. Most adults have been exposed to several antigenically divergent H3N2 viruses through infection and/or vaccination, and those exposures affect the immune responses of those individuals. However, animal models reflecting this 'immune history' in humans are lacking and naïve animals are generally used for vaccination and virus challenge studies. Here, we describe a ferret model to mimic the serial exposure of humans to antigenically different historical H3HA proteins. In this model, ferrets were sequentially immunized with adjuvanted recombinant H3HA proteins from two or three different H3HA antigenic clusters in chronological order, and serum neutralizing antibody titers were examined against the homologous virus and viruses from different antigenic clusters. For ferrets immunized with a single HA antigen, serum neutralizing antibody titers were elevated specifically against the homologous virus. However, after immunization with the second or third antigenically distinct HA antigen in chronological order, the ferrets showed an increase in more broadly cross-reactive neutralizing titers against the antigenically distinct viruses and against the homologous virus. Sequentially immunized animals challenged with an antigenically advanced H3N2 virus showed attenuated virus growth and less body temperature increase compared with naïve animals. These results suggest that sequential exposure to antigenically different HAs elicits broader neutralizing activity in sera and enhances immune responses against more antigenically distinct viruses Our findings may partly explain why adults who have been exposed to antigenically divergent HAs are less likely to be infected with influenza virus and have severe symptoms than children.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Adulto , Niño , Humanos , Animales , Subtipo H3N2 del Virus de la Influenza A , Hurones , Anticuerpos Antivirales , Hemaglutininas Virales , Proteínas Recombinantes , Anticuerpos Neutralizantes , Glicoproteínas Hemaglutininas del Virus de la Influenza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA