RESUMEN
Cumulative evidence suggests that the heat shock protein 90 (Hsp90) co-chaperone UNC-45 myosin chaperone A (UNC45A) contributes to tumorigenesis and that its expression in cancer cells correlates with proliferation and metastasis of solid tumors. However, the molecular mechanism by which UNC45A regulates cancer cell proliferation remains largely unknown. Here, using siRNA-mediated gene silencing and various human cells, we report that UNC45A is essential for breast cancer cell growth, but is dispensable for normal cell proliferation. Immunofluorescence microscopy, along with gene microarray and RT-quantitative PCR analyses, revealed that UNC45A localizes to the cancer cell nucleus, where it up-regulates the transcriptional activity of the glucocorticoid receptor and thereby promotes expression of the mitotic kinase NIMA-related kinase 7 (NEK7). We observed that UNC45A-deficient cancer cells exhibit extensive pericentrosomal material disorganization, as well as defects in centrosomal separation and mitotic chromosome alignment. Consequently, these cells stalled in metaphase and cytokinesis and ultimately underwent mitotic catastrophe, phenotypes that were rescued by heterologous NEK7 expression. Our results identify a key role for the co-chaperone UNC45A in cell proliferation and provide insight into the regulatory mechanism. We propose that UNC45A represents a promising new therapeutic target to inhibit cancer cell growth in solid tumor types.
Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinogénesis/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Quinasas Relacionadas con NIMA/biosíntesis , Proteínas de Neoplasias/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Carcinogénesis/patología , Femenino , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Células MCF-7 , Mitosis/genética , Quinasas Relacionadas con NIMA/genética , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Células PC-3RESUMEN
Steroid hormone receptors are ligand-dependent transcription factors that require the ordered assembly of multichaperone complexes for transcriptional activity. Although heat shock protein (Hsp) 90 and Hsp70 are key players in this process, multiple Hsp70- and Hsp90-associated cochaperones associate with receptor-chaperone complexes to regulate receptor folding and activation. Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA) was recently characterized as an Hsp70 and Hsp90-associated cochaperone that specifically regulates androgen receptor activity. However, the specificity of SGTA for additional members of the steroid hormone receptor superfamily and the mechanism by which SGTA regulates receptor activity remain unclear. Here we report that SGTA associates with and specifically regulates the androgen, glucocorticoid, and progesterone receptors and has no effect on the mineralocorticoid and estrogen receptors in both yeast and mammalian cell-based reporter assays. In both systems, SGTA knockdown/deletion enhances receptor activity, whereas SGTA overexpression suppresses receptor activity. We demonstrate that SGTA binds directly to Hsp70 and Hsp90 in vitro with similar affinities yet predominately precipitates with Hsp70 from cell lysates, suggesting a role for SGTA in early, Hsp70-mediated folding. Furthermore, SGTA expression completely abrogates the regulation of receptor function by FKBP52 (52-kDa FK506-binding protein), which acts at a later stage of the chaperone cycle. Taken together, our data suggest a role for SGTA at distinct steps in the chaperone-dependent modulation of androgen, glucocorticoid, and progesterone receptor activity.
Asunto(s)
Proteínas Portadoras/metabolismo , Receptores Androgénicos/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Progesterona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Técnicas de Silenciamiento del Gen , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Células HeLa , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Unión a Tacrolimus/metabolismo , Técnicas del Sistema de Dos HíbridosRESUMEN
Pharmacological inhibition of Hsp90 is an exciting option for cancer therapy. The clinical efficacy of Hsp90 inhibitors is, however, less than expected. Binding of the co-chaperone p23 to Hsp90 and induced overexpression of anti-apoptotic proteins Hsp70 and Hsp27 are thought to contribute to this outcome. Herein, we report that the natural product gedunin may provide a new alternative to inactivate the Hsp90 machine. We show that gedunin directly binds to p23 and inactivates it, without overexpression of Hsp27 and relatively modest induction of Hsp70. Using molecular docking and mutational analysis, we mapped the gedunin-binding site on p23. Functional analysis shows that gedunin inhibits the p23 chaperoning activity, blocks its cellular interaction with Hsp90, and interferes with p23-mediated gene regulation. Cell treatment with gedunin leads to cancer cell death by apoptosis through inactivation of p23 and activation of caspase 7, which cleaves p23 at the C terminus. These results provide important insight into the molecular mechanism of action of this promising lead compound.
Asunto(s)
Apoptosis/efectos de los fármacos , Limoninas/farmacología , Chaperonas Moleculares/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Sitios de Unión/genética , Western Blotting , Caspasa 7/metabolismo , Línea Celular Tumoral , Células Cultivadas , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Células HeLa , Humanos , Limoninas/metabolismo , Células MCF-7 , Ratones , Microscopía Fluorescente , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Mutación , Neoplasias/metabolismo , Neoplasias/patología , Unión Proteica , Estructura Terciaria de Proteína , Células Sf9RESUMEN
Heat shock protein 90 (Hsp90) and its co-chaperones promote cancer, and targeting Hsp90 holds promise for cancer treatment. Most of the efforts to harness this potential have focused on targeting the Hsp90 N-terminus ATP binding site. Although newer-generation inhibitors have shown improved efficacy in aggressive cancers, induction of the cellular heat shock response (HSR) by these inhibitors is thought to limit their clinical efficacy. Therefore, Hsp90 inhibitors with novel mechanisms of action and that do not trigger the HSR would be advantageous. Here, we investigated the mechanism by which capsaicin inhibits Hsp90. Through mutagenesis, chemical modifications, and proteomic studies, we show that capsaicin binds to the N-terminus of Hsp90 and inhibits its ATPase activity. Consequently, capsaicin and its analogs inhibit Hsp90 ATPase-dependent progesterone receptor reconstitution in vitro. Capsaicin did not induce the HSR, instead, it promoted the degradation of Hsp70 through the lysosome-autophagy pathway. Remarkably, capsaicin did not induce degradation of the constitutively expressed cognate Hsc70, indicating selectivity for Hsp70. Combined treatments of capsaicin and the Hsp90 inhibitor 17-AAG improved the anti-tumor efficacy of 17-AAG in cell culture and tridimensional tumor spheroid growth assays using breast and prostate cancer models. Consistent with this, in silico docking studies revealed that capsaicin binding to the ATP binding site of Hsp90 was distinct from classical N-terminus Hsp90 inhibitors, indicating a novel mechanism of action. Collectively, these findings support the use of capsaicin as a chemical scaffold to develop novel Hsp90 N-terminus inhibitors as well as its ability to be a potential cancer co-therapeutic.
Asunto(s)
Capsaicina , Neoplasias de la Próstata , Masculino , Humanos , Capsaicina/farmacología , Proteómica , Proteínas HSP70 de Choque Térmico , Proteínas HSP90 de Choque Térmico , Lisosomas , Adenosina Trifosfatasas , Adenosina TrifosfatoRESUMEN
Hsp90 and its co-chaperones are known to be important for cancer cell survival. The N-terminal inhibitors of Hsp90 that are in ongoing clinical trials as antitumor agents have unfortunately shown disappointing efficacies in the clinic. Thus, novel inhibitors of the Hsp90 machine with a different mechanism of action are urgently needed. We report here the development of a novel high-throughput screening assay platform to identify small-molecule inhibitors of Hsp90 and its co-chaperones. This assay quantitatively measures the ability of Hsp90 and its co-chaperones to refold/protect the progesterone receptor, a physiological client of Hsp90, in a 96-well plate format. We screened the National Institutes of Health clinical collection drug library and identified capsaicin as a hit molecule. Capsaicin is a Food and Drug Administration-approved drug for topical use in pain management. Cell survival assays showed that capsaicin selectively kills cancer cells and destabilizes several Hsp90 client proteins. Thus, our data may explain the seemingly pleotropic effect of capsaicin.