Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 293(8): 2755-2769, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29301937

RESUMEN

An increasing prevalence of cases of drug-resistant tuberculosis requires the development of more efficacious chemotherapies. We previously reported the discovery of a new class of cyclipostins and cyclophostin (CyC) analogs exhibiting potent activity against Mycobacterium tuberculosis both in vitro and in infected macrophages. Competitive labeling/enrichment assays combined with MS have identified several serine or cysteine enzymes in lipid and cell wall metabolism as putative targets of these CyC compounds. These targets included members of the antigen 85 (Ag85) complex (i.e. Ag85A, Ag85B, and Ag85C), responsible for biosynthesis of trehalose dimycolate and mycolylation of arabinogalactan. Herein, we used biochemical and structural approaches to validate the Ag85 complex as a pharmacological target of the CyC analogs. We found that CyC7ß, CyC8ß, and CyC17 bind covalently to the catalytic Ser124 residue in Ag85C; inhibit mycolyltransferase activity (i.e. the transfer of a fatty acid molecule onto trehalose); and reduce triacylglycerol synthase activity, a property previously attributed to Ag85A. Supporting these results, an X-ray structure of Ag85C in complex with CyC8ß disclosed that this inhibitor occupies Ag85C's substrate-binding pocket. Importantly, metabolic labeling of M. tuberculosis cultures revealed that the CyC compounds impair both trehalose dimycolate synthesis and mycolylation of arabinogalactan. Overall, our study provides compelling evidence that CyC analogs can inhibit the activity of the Ag85 complex in vitro and in mycobacteria, opening the door to a new strategy for inhibiting Ag85. The high-resolution crystal structure obtained will further guide the rational optimization of new CyC scaffolds with greater specificity and potency against M. tuberculosis.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Antituberculosos/farmacología , Inhibidores Enzimáticos/farmacología , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Compuestos Organofosforados/farmacología , Acilación/efectos de los fármacos , Aciltransferasas/genética , Aciltransferasas/metabolismo , Sustitución de Aminoácidos , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Antituberculosos/química , Antituberculosos/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Ligandos , Viabilidad Microbiana/efectos de los fármacos , Conformación Molecular , Mutación , Mycobacterium tuberculosis/citología , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Compuestos Organofosforados/química , Compuestos Organofosforados/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Serina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA