Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.155
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 625(7996): 673-678, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38267680

RESUMEN

Quantum electrodynamics (QED), the quantum field theory that describes the interaction between light and matter, is commonly regarded as the best-tested quantum theory in modern physics. However, this claim is mostly based on extremely precise studies performed in the domain of relatively low field strengths and light atoms and ions1-6. In the realm of very strong electromagnetic fields such as in the heaviest highly charged ions (with nuclear charge Z ≫ 1), QED calculations enter a qualitatively different, non-perturbative regime. Yet, the corresponding experimental studies are very challenging, and theoretical predictions are only partially tested. Here we present an experiment sensitive to higher-order QED effects and electron-electron interactions in the high-Z regime. This is achieved by using a multi-reference method based on Doppler-tuned X-ray emission from stored relativistic uranium ions with different charge states. The energy of the 1s1/22p3/2 J = 2 → 1s1/22s1/2 J = 1 intrashell transition in the heaviest two-electron ion (U90+) is obtained with an accuracy of 37 ppm. Furthermore, a comparison of uranium ions with different numbers of bound electrons enables us to disentangle and to test separately the one-electron higher-order QED effects and the bound electron-electron interaction terms without the uncertainty related to the nuclear radius. Moreover, our experimental result can discriminate between several state-of-the-art theoretical approaches and provides an important benchmark for calculations in the strong-field domain.

2.
Nat Immunol ; 22(10): 1203-1204, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34556882
3.
Immunity ; 51(6): 1074-1087.e9, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31784108

RESUMEN

Infections induce complex host responses linked to antiviral defense, inflammation, and tissue damage and repair. We hypothesized that the liver, as a central metabolic hub, may orchestrate systemic metabolic changes during infection. We infected mice with chronic lymphocytic choriomeningitis virus (LCMV), performed RNA sequencing and proteomics of liver tissue, and integrated these data with serum metabolomics at different infection phases. Widespread reprogramming of liver metabolism occurred early after infection, correlating with type I interferon (IFN-I) responses. Viral infection induced metabolic alterations of the liver that depended on the interferon alpha/beta receptor (IFNAR1). Hepatocyte-intrinsic IFNAR1 repressed the transcription of metabolic genes, including Otc and Ass1, which encode urea cycle enzymes. This led to decreased arginine and increased ornithine concentrations in the circulation, resulting in suppressed virus-specific CD8+ T cell responses and ameliorated liver pathology. These findings establish IFN-I-induced modulation of hepatic metabolism and the urea cycle as an endogenous mechanism of immunoregulation. VIDEO ABSTRACT.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Interferón Tipo I/inmunología , Hígado/metabolismo , Virus de la Coriomeningitis Linfocítica/inmunología , Receptor de Interferón alfa y beta/metabolismo , Animales , Arginina/sangre , Línea Celular , Chlorocebus aethiops , Cricetinae , Femenino , Hepatocitos/metabolismo , Hígado/inmunología , Hígado/virología , Coriomeningitis Linfocítica/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ornitina/sangre , Ornitina Carbamoiltransferasa/genética , Transducción de Señal/inmunología , Urea/metabolismo , Células Vero
4.
Nature ; 603(7901): 439-444, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296845

RESUMEN

The introduction of molecular complexity in an atom- and step-efficient manner remains an outstanding goal in modern synthetic chemistry. Artificial biosynthetic pathways are uniquely able to address this challenge by using enzymes to carry out multiple synthetic steps simultaneously or in a one-pot sequence1-3. Conducting biosynthesis ex vivo further broadens its applicability by avoiding cross-talk with cellular metabolism and enabling the redesign of key biosynthetic pathways through the use of non-natural cofactors and synthetic reagents4,5. Here we describe the discovery and construction of an enzymatic cascade to MK-1454, a highly potent stimulator of interferon genes (STING) activator under study as an immuno-oncology therapeutic6,7 (ClinicalTrials.gov study NCT04220866 ). From two non-natural nucleotide monothiophosphates, MK-1454 is assembled diastereoselectively in a one-pot cascade, in which two thiotriphosphate nucleotides are simultaneously generated biocatalytically, followed by coupling and cyclization catalysed by an engineered animal cyclic guanosine-adenosine synthase (cGAS). For the thiotriphosphate synthesis, three kinase enzymes were engineered to develop a non-natural cofactor recycling system in which one thiotriphosphate serves as a cofactor in its own synthesis. This study demonstrates the substantial capacity that currently exists to use biosynthetic approaches to discover and manufacture complex, non-natural molecules.


Asunto(s)
Guanosina , Nucleotidiltransferasas , Adenosina , Animales , Interferones , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal
5.
Mol Cell ; 78(1): 42-56.e6, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32035036

RESUMEN

The functional relevance and mechanistic basis of the effects of the neurotransmitter dopamine (DA) on inflammation remain unclear. Here we reveal that DA inhibited TLR2-induced NF-κB activation and inflammation via the DRD5 receptor in macrophages. We found that the DRD5 receptor, via the EFD and IYX(X)I/L motifs in its CT and IC3 loop, respectively, can directly recruit TRAF6 and its negative regulator ARRB2 to form a multi-protein complex also containing downstream signaling proteins, such as TAK1, IKKs, and PP2A, that impairs TRAF6-mediated activation of NF-κB and expression of pro-inflammatory genes. Furthermore, the DA-DRD5-ARRB2-PP2A signaling axis can prevent S. aureus-induced inflammation and protect mice against S. aureus-induced sepsis and meningitis after DA treatment. Collectively, these findings provide the first demonstration of DA-DRD5 signaling acting to control inflammation and a detailed delineation of the underlying mechanism and identify the DRD5-ARRB2-PP2A axis as a potential target for future therapy of inflammation-associated diseases such as meningitis and sepsis.


Asunto(s)
Dopamina/fisiología , Inflamación/metabolismo , Proteína Fosfatasa 2/metabolismo , Receptores de Dopamina D5/metabolismo , Transducción de Señal , Arrestina beta 2/metabolismo , Secuencias de Aminoácidos , Animales , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Receptores de Dopamina D5/química , Factor 6 Asociado a Receptor de TNF/antagonistas & inhibidores , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 2/antagonistas & inhibidores , Arrestina beta 2/fisiología
6.
Am J Hum Genet ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38991590

RESUMEN

The secreted mucins MUC5AC and MUC5B are large glycoproteins that play critical defensive roles in pathogen entrapment and mucociliary clearance. Their respective genes contain polymorphic and degenerate protein-coding variable number tandem repeats (VNTRs) that make the loci difficult to investigate with short reads. We characterize the structural diversity of MUC5AC and MUC5B by long-read sequencing and assembly of 206 human and 20 nonhuman primate (NHP) haplotypes. We find that human MUC5B is largely invariant (5,761-5,762 amino acids [aa]); however, seven haplotypes have expanded VNTRs (6,291-7,019 aa). In contrast, 30 allelic variants of MUC5AC encode 16 distinct proteins (5,249-6,325 aa) with cysteine-rich domain and VNTR copy-number variation. We group MUC5AC alleles into three phylogenetic clades: H1 (46%, ∼5,654 aa), H2 (33%, ∼5,742 aa), and H3 (7%, ∼6,325 aa). The two most common human MUC5AC variants are smaller than NHP gene models, suggesting a reduction in protein length during recent human evolution. Linkage disequilibrium and Tajima's D analyses reveal that East Asians carry exceptionally large blocks with an excess of rare variation (p < 0.05) at MUC5AC. To validate this result, we use Locityper for genotyping MUC5AC haplogroups in 2,600 unrelated samples from the 1000 Genomes Project. We observe a signature of positive selection in H1 among East Asians and a depletion of the likely ancestral haplogroup (H3). In Europeans, H3 alleles show an excess of common variation and deviate from Hardy-Weinberg equilibrium (p < 0.05), consistent with heterozygote advantage and balancing selection. This study provides a generalizable strategy to characterize complex protein-coding VNTRs for improved disease associations.

7.
Cell ; 151(4): 900-911, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23141545

RESUMEN

Short hairpin RNA (shRNA)-induced RNAi is used for biological discovery and therapeutics. Dicer, whose normal role is to liberate endogenous miRNAs from their precursors, processes shRNAs into different biologically active siRNAs, affecting their efficacy and potential for off-targeting. We found that, in cells, Dicer induced imprecise cleavage events around the expected sites based on the previously described 5'/3' counting rules. These promiscuous noncanonical cleavages were abrogated when the cleavage site was positioned 2 nt from a bulge or loop. Interestingly, we observed that the ~1/3 of mammalian endogenous pre-miRNAs that contained such structures were more precisely processed by Dicer. Implementing a "loop-counting rule," we designed potent anti-HCV shRNAs with substantially reduced off-target effects. Our results suggest that Dicer recognizes the loop/bulge structure in addition to the ends of shRNAs/pre-miRNAs for accurate processing. This has important implications for both miRNA processing and future design of shRNAs for RNAi-based genetic screens and therapies.


Asunto(s)
ARN Interferente Pequeño/metabolismo , Ribonucleasa III/metabolismo , Animales , Secuencia de Bases , Embrión de Mamíferos/citología , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , MicroARNs , ARN Interferente Pequeño/química , Análisis de Secuencia de ARN
9.
Mol Biol Evol ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041196

RESUMEN

Cyanobacteriota, the sole prokaryotes capable of oxygenic photosynthesis (OxyP), occupy a unique and pivotal role in Earth's history. While the notion that OxyP may have originated from Cyanobacteriota is widely accepted, its early evolution remains elusive. Here, by using both metagenomics and metatranscriptomics, we explore 36 metagenome-assembled genomes (MAGs) from hot spring ecosystems, belonging to two deep-branching cyanobacterial orders: Thermostichales and Gloeomargaritales. Functional investigation reveals that Thermostichales encode the crucial thylakoid membrane biogenesis protein, Vipp1. Based on the phylogenetic results, we infer that the evolution of the thylakoid membrane predates the divergence of Thermostichales from other cyanobacterial groups and that Thermostichales may be the most ancient lineage known to date to have inherited this feature from their common ancestor. Apart from OxyP, both lineages are potentially capable of sulfide-driven anoxygenic photosynthesis (AnoxyP) by linking sulfide oxidation to the photosynthetic electron transport chain. Unexpectedly, this AnoxyP capacity appears to be an acquired feature, as the key gene sqr was horizontally transferred from later-evolved cyanobacterial lineages. The presence of two D1 protein variants in Thermostichales suggests the functional flexibility of photosystems, ensuring their survival in fluctuating redox environments. Furthermore, all MAGs feature streamlined phycobilisomes with a preference for capturing longer-wavelength light, implying a unique evolutionary trajectory. Collectively, these results reveal the photosynthetic flexibility in these early-diverging cyanobacterial lineages, shedding new light on the early evolution of Cyanobacteriota and their photosynthetic processes.

10.
Nat Immunol ; 14(9): 927-36, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23892723

RESUMEN

Mutations that result in loss of function of Nod2, an intracellular receptor for bacterial peptidoglycan, are associated with Crohn's disease. Here we found that the E3 ubiquitin ligase Pellino3 was an important mediator in the Nod2 signaling pathway. Pellino3-deficient mice had less induction of cytokines after engagement of Nod2 and had exacerbated disease in various experimental models of colitis. Furthermore, expression of Pellino3 was lower in the colons of patients with Crohn's disease. Pellino3 directly bound to the kinase RIP2 and catalyzed its ubiquitination. Loss of Pellino3 led to attenuation of Nod2-induced ubiquitination of RIP2 and less activation of the transcription factor NF-κB and mitogen-activated protein kinases (MAPKs). Our findings identify RIP2 as a substrate for Pellino3 and Pellino3 as an important mediator in the Nod2 pathway and regulator of intestinal inflammation.


Asunto(s)
Colitis/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Citrobacter rodentium/inmunología , Colitis/genética , Colitis/inmunología , Colitis/microbiología , Enfermedad de Crohn/genética , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/metabolismo , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Adulto Joven
11.
Hepatology ; 79(2): 502-523, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37540183

RESUMEN

BACKGROUND AND AIMS: Fatty liver disease is a major public health threat due to its very high prevalence and related morbidity and mortality. Focused and dedicated interventions are urgently needed to target disease prevention, treatment, and care. APPROACH AND RESULTS: We developed an aligned, prioritized action agenda for the global fatty liver disease community of practice. Following a Delphi methodology over 2 rounds, a large panel (R1 n = 344, R2 n = 288) reviewed the action priorities using Qualtrics XM, indicating agreement using a 4-point Likert-scale and providing written feedback. Priorities were revised between rounds, and in R2, panelists also ranked the priorities within 6 domains: epidemiology, treatment and care, models of care, education and awareness, patient and community perspectives, and leadership and public health policy. The consensus fatty liver disease action agenda encompasses 29 priorities. In R2, the mean percentage of "agree" responses was 82.4%, with all individual priorities having at least a super-majority of agreement (> 66.7% "agree"). The highest-ranked action priorities included collaboration between liver specialists and primary care doctors on early diagnosis, action to address the needs of people living with multiple morbidities, and the incorporation of fatty liver disease into relevant non-communicable disease strategies and guidance. CONCLUSIONS: This consensus-driven multidisciplinary fatty liver disease action agenda developed by care providers, clinical researchers, and public health and policy experts provides a path to reduce the prevalence of fatty liver disease and improve health outcomes. To implement this agenda, concerted efforts will be needed at the global, regional, and national levels.


Asunto(s)
Atención a la Salud , Hepatopatías , Humanos
12.
Brain ; 147(7): 2368-2383, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38226698

RESUMEN

Loss-of-function variants in the triggering receptor expressed on myeloid cells 2 (TREM2) are responsible for a spectrum of neurodegenerative disorders. In the homozygous state, they cause severe pathologies with early onset dementia, such as Nasu-Hakola disease and behavioural variants of frontotemporal dementia (FTD), whereas heterozygous variants increase the risk of late-onset Alzheimer's disease (AD) and FTD. For over half of TREM2 variants found in families with recessive early onset dementia, the defect occurs at the transcript level via premature termination codons or aberrant splicing. The remaining variants are missense alterations thought to affect the protein; however, the underlying pathogenic mechanism is less clear. In this work, we tested whether these disease-associated TREM2 variants contribute to the pathology via altered splicing. Variants scored by SpliceAI algorithm were tested by a full-size TREM2 splicing reporter assay in different cell lines. The effect of variants was quantified by qRT-/RT-PCR and western blots. Nanostring nCounter was used to measure TREM2 RNA in the brains of NHD patients who carried spliceogenic variants. Exon skipping events were analysed from brain RNA-Seq datasets available through the Accelerating Medicines Partnership for Alzheimer's Disease Consortium. We found that for some Nasu-Hakola disease and early onset FTD-causing variants, splicing defects were the primary cause (D134G) or likely contributor to pathogenicity (V126G and K186N). Similar but milder effects on splicing of exons 2 and 3 were demonstrated for A130V, L133L and R136W enriched in patients with dementia. Moreover, the two most frequent missense variants associated with AD/FTD risk in European and African ancestries (R62H, 1% in Caucasians and T96K, 12% in Africans) had splicing defects via excessive skipping of exon 2 and overproduction of a potentially antagonistic TREM2 protein isoform. The effect of R62H on exon 2 skipping was confirmed in three independent brain RNA-Seq datasets. Our findings revealed an unanticipated complexity of pathogenic variation in TREM2, in which effects on post-transcriptional gene regulation and protein function often coexist. This necessitates the inclusion of computational and experimental analyses of splicing and mRNA processing for a better understanding of genetic variation in disease.


Asunto(s)
Enfermedad de Alzheimer , Glicoproteínas de Membrana , Empalme del ARN , Receptores Inmunológicos , Humanos , Receptores Inmunológicos/genética , Enfermedad de Alzheimer/genética , Glicoproteínas de Membrana/genética , Empalme del ARN/genética , Demencia Frontotemporal/genética , Demencia/genética , Predisposición Genética a la Enfermedad/genética
13.
Proc Natl Acad Sci U S A ; 119(45): e2210809119, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322773

RESUMEN

Inflammatory pathways usually utilize negative feedback regulatory systems to prevent tissue damage arising from excessive inflammatory response. Whether such negative feedback mechanisms exist in inflammasome activation remains unknown. Gasdermin D (GSDMD) is the pyroptosis executioner of downstream inflammasome signaling. Here, we found that GSDMD, after its cleavage by caspase-1/11, utilizes its RFWK motif in the N-terminal ß1-ß2 loop to inhibit the activation of caspase-1/11 and downstream inflammation in a negative feedback manner. Furthermore, an RFWK motif-based peptide inhibitor can inhibit caspase-1/11 activation and its downstream substrates GSDMD and interleukin-1ß cleavage, as well as lipopolysaccharide-induced sepsis in mice. Collectively, these findings provide a demonstration of the N-terminal fragment of GSDMD as a negative feedback regulator controlling inflammasome activation and a detailed delineation of the underlying inhibitory mechanism.


Asunto(s)
Inflamasomas , Péptidos y Proteínas de Señalización Intracelular , Animales , Ratones , Caspasa 1/metabolismo , Retroalimentación , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Unión a Fosfato , Proteínas Citotóxicas Formadoras de Poros/farmacología
14.
Proc Natl Acad Sci U S A ; 119(20): e2118510119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35561216

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of visual loss. It has a strong genetic basis, and common haplotypes on chromosome (Chr) 1 (CFH Y402H variant) and on Chr10 (near HTRA1/ARMS2) contribute the most risk. Little is known about the early molecular and cellular processes in AMD, and we hypothesized that analyzing submacular tissue from older donors with genetic risk but without clinical features of AMD would provide biological insights. Therefore, we used mass spectrometry­based quantitative proteomics to compare the proteins in human submacular stromal tissue punches from donors who were homozygous for high-risk alleles at either Chr1 or Chr10 with those from donors who had protective haplotypes at these loci, all without clinical features of AMD. Additional comparisons were made with tissue from donors who were homozygous for high-risk Chr1 alleles and had early AMD. The Chr1 and Chr10 risk groups shared common changes compared with the low-risk group, particularly increased levels of mast cell­specific proteases, including tryptase, chymase, and carboxypeptidase A3. Histological analyses of submacular tissue from donors with genetic risk of AMD but without clinical features of AMD and from donors with Chr1 risk and AMD demonstrated increased mast cells, particularly the tryptase-positive/chymase-negative cells variety, along with increased levels of denatured collagen compared with tissue from low­genetic risk donors. We conclude that increased mast cell infiltration of the inner choroid, degranulation, and subsequent extracellular matrix remodeling are early events in AMD pathogenesis and represent a unifying mechanistic link between Chr1- and Chr10-mediated AMD.


Asunto(s)
Cromosomas Humanos Par 10 , Cromosomas Humanos Par 1 , Degeneración Macular , Mastocitos , Péptido Hidrolasas , Alelos , Coroides/enzimología , Coroides/patología , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 10/genética , Humanos , Degeneración Macular/genética , Degeneración Macular/patología , Mastocitos/patología , Péptido Hidrolasas/genética , Proteómica , Riesgo , Triptasas/metabolismo
15.
J Infect Dis ; 229(4): 1123-1130, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37969014

RESUMEN

BACKGROUND: While noninferiority of tenofovir alafenamide and emtricitabine (TAF/FTC) as preexposure prophylaxis (PrEP) for the prevention of human immunodeficiency virus (HIV) has been shown, interest remains in its efficacy relative to placebo. We estimate the efficacy of TAF/FTC PrEP versus placebo for the prevention of HIV infection. METHODS: We used data from the DISCOVER and iPrEx trials to compare TAF/FTC to placebo. DISCOVER was a noninferiority trial conducted from 2016 to 2017. iPrEx was a placebo-controlled trial conducted from 2007 to 2009. Inverse probability weights were used to standardize the iPrEx participants to the distribution of demographics and risk factors in the DISCOVER trial. To check the comparison, we evaluated whether risk of HIV infection in the shared tenofovir disoproxil fumarate and emtricitabine (TDF/FTC) arms was similar. RESULTS: Notable differences in demographics and risk factors occurred between trials. After standardization, the difference in risk of HIV infection between the TDF/FTC arms was near zero. The risk of HIV with TAF/FTC was 5.8 percentage points lower (95% confidence interval [CI], -2.0% to -9.6%) or 12.5-fold lower (95% CI, .02 to .31) than placebo standardized to the DISCOVER population. CONCLUSIONS: There was a reduction in HIV infection with TAF/FTC versus placebo across 96 weeks of follow-up. CLINICAL TRIALS REGISTRATION: NCT02842086 and NCT00458393.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Profilaxis Pre-Exposición , Minorías Sexuales y de Género , Masculino , Humanos , Infecciones por VIH/prevención & control , Infecciones por VIH/tratamiento farmacológico , VIH , Homosexualidad Masculina , Tenofovir/uso terapéutico , Emtricitabina/uso terapéutico , Adenina/uso terapéutico
16.
Genes Immun ; 25(2): 108-116, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38267542

RESUMEN

Primary antiphospholipid syndrome is characterized by thrombosis and autoantibodies directed against phospholipids or associated proteins. The genetic etiology of PAPS remains unknown. We enrolled 21 patients with thromboembolic events associated to lupus anticoagulant, anticardiolipin and anti ß2 glycoprotein1 autoantibodies. We performed whole exome sequencing and a systematic variant-based analysis in genes associated with thrombosis, in candidate genes previously associated with APS or inborn errors of immunity. Data were compared to public databases and to a control cohort of 873 non-autoimmune patients. Variants were identified following a state-of-the-art pipeline. Enrichment analysis was performed by comparing with the control cohort. We found an absence of significant HLA bias and genetic heterogeneity in these patients, including when testing combinations of rare variants in genes encoding for proteins involved in thrombosis and of variants in genes linked with inborn errors of immunity. These results provide evidence of genetic heterogeneity in PAPS, even in a homogenous series of triple positive patients. At the individual scale, a combination of variants may participate to the breakdown of B cell tolerance and to the vessel damage.


Asunto(s)
Síndrome Antifosfolípido , Trombosis , Humanos , Exoma , Síndrome Antifosfolípido/complicaciones , Inhibidor de Coagulación del Lupus , Autoanticuerpos , Trombosis/complicaciones
17.
Neurobiol Dis ; 193: 106441, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378122

RESUMEN

Alzheimer's disease (AD), the most common aging-associated neurodegenerative dementia disorder, is defined by the presence of amyloid beta (Aß) and tau aggregates in the brain. However, more than half of patients also exhibit aggregates of the protein TDP-43 as a secondary pathology. The presence of TDP-43 pathology in AD is associated with increased tau neuropathology and worsened clinical outcomes in AD patients. Using C. elegans models of mixed pathology in AD, we have previously shown that TDP-43 specifically synergizes with tau but not Aß, resulting in enhanced neuronal dysfunction, selective neurodegeneration, and increased accumulation of pathological tau. However, cellular responses to co-morbid tau and TDP-43 preceding neurodegeneration have not been characterized. In this study, we evaluate transcriptomic changes at time-points preceding frank neuronal loss using a C. elegans model of tau and TDP-43 co-expression (tau-TDP-43 Tg). We find significant differential expression and exon usage in genes enriched in multiple pathways including lipid metabolism and lysosomal degradation. We note that early changes in tau-TDP-43 Tg resemble changes with tau alone, but a unique expression signature emerges during aging. We test loss-of-function mutations in a subset of tau and TDP-43 responsive genes, identifying new modifiers of neurotoxicity. Characterizing early cellular responses to tau and TDP-43 co-pathology is critical for understanding protective and pathogenic responses to mixed proteinopathies, and an important step in developing therapeutic strategies protecting against pathological tau and TDP-43 in AD.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Animales , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Péptidos beta-Amiloides/genética , Caenorhabditis elegans/genética , Tauopatías/genética , Enfermedad de Alzheimer/metabolismo , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica
18.
Am J Epidemiol ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38751323

RESUMEN

In 2023, Martinez et al. examined trends in the inclusion, conceptualization, operationalization and analysis of race and ethnicity among studies published in US epidemiology journals. Based on a random sample of papers (N=1,050) published from 1995-2018, the authors describe the treatment of race, ethnicity, and ethnorace in the analytic sample (N=414, 39% of baseline sample) over time. Between 32% and 19% of studies in each time stratum lacked race data; 61% to 34% lacked ethnicity data. The review supplies stark evidence of the routine omission and variability of measures of race and ethnicity in epidemiologic research. Informed by public health critical race praxis (PHCRP), this commentary discusses the implications of four problems the findings suggest pervade epidemiology: 1) a general lack of clarity about what race and ethnicity are; 2) the limited use of critical race or other theory; 3) an ironic lack of rigor in measuring race and ethnicity; and, 4) the ordinariness of racism and white supremacy in epidemiology. The identified practices reflect neither current publication guidelines nor the state of the knowledge on race, ethnicity and racism; therefore, we conclude by offering recommendations to move epidemiology toward more rigorous research in an increasingly diverse society.

19.
Am J Hum Genet ; 108(8): 1385-1400, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34260948

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of vision loss; there is strong genetic susceptibility at the complement factor H (CFH) locus. This locus encodes a series of complement regulators: factor H (FH), a splice variant factor-H-like 1 (FHL-1), and five factor-H-related proteins (FHR-1 to FHR-5), all involved in the regulation of complement factor C3b turnover. Little is known about how AMD-associated variants at this locus might influence FHL-1 and FHR protein concentrations. We have used a bespoke targeted mass-spectrometry assay to measure the circulating concentrations of all seven complement regulators and demonstrated elevated concentrations in 352 advanced AMD-affected individuals for all FHR proteins (FHR-1, p = 2.4 × 10-10; FHR-2, p = 6.0 × 10-10; FHR-3, p = 1.5 × 10-5; FHR-4, p = 1.3 × 10-3; FHR-5, p = 1.9 × 10-4) and FHL-1 (p = 4.9 × 10-4) when these individuals were compared to 252 controls, whereas no difference was seen for FH (p = 0.94). Genome-wide association analyses in controls revealed genome-wide-significant signals at the CFH locus for all five FHR proteins, and univariate Mendelian-randomization analyses strongly supported the association of FHR-1, FHR-2, FHR-4, and FHR-5 with AMD susceptibility. These findings provide a strong biochemical explanation for how genetically driven alterations in circulating FHR proteins could be major drivers of AMD and highlight the need for research into FHR protein modulation as a viable therapeutic avenue for AMD.


Asunto(s)
Proteínas Inactivadoras del Complemento C3b/metabolismo , Factor H de Complemento/genética , Predisposición Genética a la Enfermedad , Degeneración Macular/sangre , Polimorfismo de Nucleótido Simple , Anciano , Estudios de Casos y Controles , Proteínas Inactivadoras del Complemento C3b/genética , Femenino , Humanos , Degeneración Macular/genética , Degeneración Macular/patología , Masculino , Factores de Riesgo
20.
Hum Brain Mapp ; 45(9): e26771, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38925589

RESUMEN

Neuroimaging studies have consistently demonstrated concurrent activation of the human precuneus and temporal pole (TP), both during resting-state conditions and various higher-order cognitive functions. However, the precise underlying structural connectivity between these brain regions remains uncertain despite significant advancements in neuroscience research. In this study, we investigated the connectivity of the precuneus and TP by employing parcellation-based fiber micro-dissections in human brains and fiber tractography techniques in a sample of 1065 human subjects and a sample of 41 rhesus macaques. Our results demonstrate the connectivity between the posterior precuneus area POS2 and the areas 35, 36, and TG of the TP via the fifth subcomponent of the cingulum (CB-V) also known as parahippocampal cingulum. This finding contributes to our understanding of the connections within the posteromedial cortices, facilitating a more comprehensive integration of anatomy and function in both normal and pathological brain processes. PRACTITIONER POINTS: Our investigation delves into the intricate architecture and connectivity patterns of subregions within the precuneus and temporal pole, filling a crucial gap in our knowledge. We revealed a direct axonal connection between the posterior precuneus (POS2) and specific areas (35, 35, and TG) of the temporal pole. The direct connections are part of the CB-V pathway and exhibit a significant association with the cingulum, SRF, forceps major, and ILF. Population-based human tractography and rhesus macaque fiber tractography showed consistent results that support micro-dissection outcomes.


Asunto(s)
Imagen de Difusión Tensora , Macaca mulatta , Vías Nerviosas , Lóbulo Parietal , Lóbulo Temporal , Humanos , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología , Lóbulo Temporal/anatomía & histología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Lóbulo Parietal/anatomía & histología , Animales , Imagen de Difusión Tensora/métodos , Masculino , Adulto , Femenino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Adulto Joven , Axones/fisiología , Conectoma , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/anatomía & histología , Sustancia Blanca/fisiología , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiología , Giro del Cíngulo/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA