Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 27(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35011536

RESUMEN

Liquefaction of biomass delivers a liquid bio-oil with relevant chemical and energetic applications. In this study we coupled it with short rotation coppice (SRC) intensively managed poplar cultivations aimed at biomass production while safeguarding environmental principles of soil quality and biodiversity. We carried out acid-catalyzed liquefaction, at 160 °C and atmospheric pressure, with eight poplar clones from SRC cultivations. The bio-oil yields were high, ranging between 70.7 and 81.5%. Average gains of bio-oil, by comparison of raw biomasses, in elementary carbon and hydrogen and high heating, were 25.6, 67, and 74%, respectively. Loss of oxygen and O/C ratios averaged 38 and 51%, respectively. Amounts of elementary carbon, oxygen, and hydrogen in bio-oil were 65, 26, and 8.7%, and HHV averaged 30.5 MJkg-1. Correlation analysis showed the interrelation between elementary carbon with HHV in bio-oil or with oxygen loss. Overall, from 55 correlations, 21 significant and high correlations among a set of 11 variables were found. Among the most relevant ones, the percentage of elementary carbon presented five significant correlations with the percentage of O (-0.980), percentage of C gain (0.902), percentage of O loss (0.973), HHV gain (0.917), and O/C loss (0.943). The amount of carbon is directly correlated with the amount of oxygen, conversely, the decrease in oxygen content increases the elementary carbon and hydrogen concentration, which leads to an improvement in HHV. HHV gain showed a strong positive dependence on the percentage of C (0.917) and percentage of C gain (0.943), while the elementary oxygen (-0.885) and its percentage of O loss (0.978) adversely affect the HHV gain. Consequently, the O/C loss (0.970) increases the HHV positively. van Krevelen's analysis indicated that bio-oils are chemically compatible with liquid fossil fuels. FTIR-ATR evidenced the presence of derivatives of depolymerization of lignin and cellulose in raw biomasses in bio-oil. TGA/DTG confirmed the bio-oil burning aptitude by the high average 53% mass loss of volatiles associated with lowered peaking decomposition temperatures by 100 °C than raw biomasses. Overall, this research shows the potential of bio-oil from liquefaction of SRC biomasses for the contribution of renewable energy and chemical deliverables, and thereby, to a greener global economy.


Asunto(s)
Ácidos/química , Biomasa , Clonación de Organismos , Populus , Catálisis , Celulosa , Clonación de Organismos/métodos , Lignina , Populus/genética , Populus/metabolismo
2.
Clin Sci (Lond) ; 134(15): 1991-2017, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32749472

RESUMEN

The major risk factors to fatal outcome in COVID-19 patients, i.e., elderliness and pre-existing metabolic and cardiovascular diseases (CVD), share in common the characteristic of being chronic degenerative diseases of inflammatory nature associated with defective heat shock response (HSR). The molecular components of the HSR, the principal metabolic pathway leading to the physiological resolution of inflammation, is an anti-inflammatory biochemical pathway that involves molecular chaperones of the heat shock protein (HSP) family during homeostasis-threatening stressful situations (e.g., thermal, oxidative and metabolic stresses). The entry of SARS coronaviruses in target cells, on the other hand, aggravates the already-jeopardized HSR of this specific group of patients. In addition, cellular counterattack against virus involves interferon (IFN)-mediated inflammatory responses. Therefore, individuals with impaired HSR cannot resolve virus-induced inflammatory burst physiologically, being susceptible to exacerbated forms of inflammation, which leads to a fatal "cytokine storm". Interestingly, some species of bats that are natural reservoirs of zoonotic viruses, including SARS-CoV-2, possess an IFN-based antiviral inflammatory response perpetually activated but do not show any sign of disease or cytokine storm. This is possible because bats present a constitutive HSR that is by far (hundreds of times) more intense and rapid than that of human, being associated with a high core temperature. Similarly in humans, fever is a physiological inducer of HSR while antipyretics, which block the initial phase of inflammation, impair the resolution phase of inflammation through the HSR. These findings offer a rationale for the reevaluation of patient care and fever reduction in SARS, including COVID-19.


Asunto(s)
Betacoronavirus/fisiología , Quirópteros/inmunología , Infecciones por Coronavirus/inmunología , Respuesta al Choque Térmico , Neumonía Viral/inmunología , Animales , Betacoronavirus/genética , COVID-19 , Quirópteros/virología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/fisiopatología , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/inmunología , Humanos , Interferones/inmunología , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/genética , Neumonía Viral/fisiopatología , SARS-CoV-2
3.
Biochem J ; 473(24): 4527-4550, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27941030

RESUMEN

Oxidative stress and chronic inflammation are known to be associated with the development of metabolic diseases, including diabetes. Oxidative stress, an imbalance between oxidative and antioxidative systems of cells and tissues, is a result of over production of oxidative-free radicals and associated reactive oxygen species (ROS). One outcome of excessive levels of ROS is the modification of the structure and function of cellular proteins and lipids, leading to cellular dysfunction including impaired energy metabolism, altered cell signalling and cell cycle control, impaired cell transport mechanisms and overall dysfunctional biological activity, immune activation and inflammation. Nutritional stress, such as that caused by excess high-fat and/or carbohydrate diets, promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation and decreased antioxidant status. In obesity, chronic oxidative stress and associated inflammation are the underlying factors that lead to the development of pathologies such as insulin resistance, dysregulated pathways of metabolism, diabetes and cardiovascular disease through impaired signalling and metabolism resulting in dysfunction to insulin secretion, insulin action and immune responses. However, exercise may counter excessive levels of oxidative stress and thus improve metabolic and inflammatory outcomes. In the present article, we review the cellular and molecular origins and significance of ROS production, the molecular targets and responses describing how oxidative stress affects cell function including mechanisms of insulin secretion and action, from the point of view of possible application of novel diabetic therapies based on redox regulation.


Asunto(s)
Diabetes Mellitus/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
4.
Biochem J ; 473(13): 1845-57, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27354561

RESUMEN

The importance of metabolic pathways for life and the nature of participating reactions have challenged physiologists and biochemists for over a hundred years. Eric Arthur Newsholme contributed many original hypotheses and concepts to the field of metabolic regulation, demonstrating that metabolic pathways have a fundamental thermodynamic structure and that near identical regulatory mechanisms exist in multiple species across the animal kingdom. His work at Oxford University from the 1970s to 1990s was groundbreaking and led to better understanding of development and demise across the lifespan as well as the basis of metabolic disruption responsible for the development of obesity, diabetes and many other conditions. In the present review we describe some of the original work of Eric Newsholme, its relevance to metabolic homoeostasis and disease and application to present state-of-the-art studies, which generate substantial amounts of data that are extremely difficult to interpret without a fundamental understanding of regulatory principles. Eric's work is a classical example of how one can unravel very complex problems by considering regulation from a cell, tissue and whole body perspective, thus bringing together metabolic biochemistry, physiology and pathophysiology, opening new avenues that now drive discovery decades thereafter.


Asunto(s)
Metabolismo/fisiología , Animales , Homeostasis , Humanos , Metabolismo/genética , Modelos Biológicos , Termodinámica
5.
Mol Cell Biochem ; 421(1-2): 111-25, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27522667

RESUMEN

Moderate exercise positively impacts innate immune functions, bringing about a better resistance against infections and general immunosurveillance. Exercise of high workloads (i.e., high intensity and/or duration) such as elite marathon, on the other hand, may have detrimental effects over immune function, but neither how long nor how intense should be the exercise sessions to be deleterious is known, this being a matter of intense dispute. Exercise is, at the same time, one of the most powerful inducers of the 70 kDa family of heat shock proteins (HSPAs, formerly known as HSP70s), which are protein chaperones characterized by a marked anti-inflammatory potency, when located intracellularly (iHSPA), but may act as pro-inflammatory cytokines if in the extracellular space (eHSPA). The above observations led us to suppose that short-term exercise could impose long-lasting effects on macrophage function that should be related to the eHSPA-to-iHSPA ratio, viz. H-index. Sedentary adult male Wistar rats were then submitted to 20 min swimming sessions with an overload (as a percentage of body weight attached to the tail base) of either 2, 4, 6, or 8 %. Control animals were maintained at rest in shallow water. Monocyte/macrophage functions (phagocytic capacity, nitric oxide [NO], and hydrogen peroxide [H2O2]) were assessed just after and 12 h after exercise and compared with HSPA status and oxidative stress markers. The results showed that exercise increased phagocytosis and H2O2 immediately after the bouts in a workload-dependent way. This was accompanied by increased H-index but no alteration in the redox status. Enhanced phagocytic capacity persisted for up to 12 h, when a marked rise in NO production was also observed, but H-index resumes its control values, suggesting that immune alertness returned to basal levels. Of note was the detection of the cognate form of eHSPA (encoded by hspa8 gene and formerly known as HSP73) in the rat sera. In total, acute exercise may evoke 12 h long workload-dependent effects associated with HSPA status.


Asunto(s)
Proteínas del Choque Térmico HSC70/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo , Óxido Nítrico/biosíntesis , Condicionamiento Físico Animal , Natación , Animales , Masculino , Ratas , Ratas Wistar
6.
Mol Cell Biochem ; 411(1-2): 351-62, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26530165

RESUMEN

In this work, we aimed to investigate the effects of long-term supplementations with L-glutamine or L-alanyl-L-glutamine in the high-fat diet (HFD)-fed B6.129SF2/J mouse model over insulin sensitivity response and signaling, oxidative stress markers, metabolism and HSP70 expression. Mice were fed in a standard low-fat diet (STA) or a HFD for 20 weeks. In the 21th week, mice from the HFD group were allocated in five groups and supplemented for additional 8 weeks with different amino acids: HFD control group (HFD-Con), HFD + dipeptide L-alanyl-L-glutamine group (HFD-Dip), HFD + L-alanine group (HFD-Ala), HFD + L-glutamine group (HFD-Gln), or the HFD + L-alanine + L-glutamine (in their free forms) group (HFD-Ala + Gln). HFD induced higher body weight, fat pad, fasted glucose, and total cholesterol in comparison with STA group. Amino acid supplementations did not induce any modifications in these parameters. Although insulin tolerance tests indicated insulin resistance in all HFD groups, amino acid supplementations did not improve insulin sensitivity in the present model. There were also no significant differences in the immunocontents of insulin receptor, Akt, and Toll-like receptor-4. Notably, total 70 kDa heat shock protein (HSP72 + HSP73) contents in the liver was markedly increased in HFD-Con group as compared to STA group, which might suggest that insulin resistance is only in the beginning. Apparently, B6.129SF2/J mice are more resistant to the harmful effects of HFD through a mechanism that may include gut adaptation, reducing the absorption of nutrients, including amino acids, which may explain the lack of improvements in our intervention.


Asunto(s)
Dieta Alta en Grasa , Modelos Animales de Enfermedad , Glutamina/administración & dosificación , Resistencia a la Insulina , Administración Oral , Animales , Glutamina/análogos & derivados , Ratones
7.
Clin Sci (Lond) ; 128(11): 789-803, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25881670

RESUMEN

The 70 kDa heat-shock protein (HSP70) family is important for a dynamic range of cellular processes that include protection against cell stress, modulation of cell signalling, gene expression, protein synthesis, protein folding and inflammation. Within this family, the inducible 72 kDa and the cognate 73 kDa forms are found at the highest level. HSP70 has dual functions depending on location. For example, intracellular HSP70 (iHSP70) is anti-inflammatory whereas extracellular HSP70 (eHSP70) has a pro-inflammatory function, resulting in local and systemic inflammation. We have recently identified a divergence in the levels of eHSP70 and iHSP70 in subjects with diabetes compared with healthy subjects and also reported that eHSP70 was correlated with insulin resistance and pancreatic ß-cell dysfunction/death. In the present review, we describe possible mechanisms by which HSP70 participates in cell function/dysfunction, including the activation of NADPH oxidase isoforms leading to oxidative stress, focusing on the possible role of HSPs and signalling in pancreatic islet α- and ß-cell physiological function in health and Type 2 diabetes mellitus.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Proteínas HSP70 de Choque Térmico/metabolismo , Islotes Pancreáticos/fisiología , NADPH Oxidasas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Espacio Extracelular/metabolismo , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/fisiología , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Espacio Intracelular/metabolismo , Islotes Pancreáticos/metabolismo , Transducción de Señal/fisiología
8.
Mol Cell Biochem ; 407(1-2): 239-49, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26045174

RESUMEN

Hot flashes, which involve a tiny rise in core temperature, are the most common complaint of peri- and post-menopausal women, being tightly related to decrease in estrogen levels. On the other hand, estradiol (E2) induces the expression of HSP72, a member of the 70 kDa family of heat shock proteins (HSP70), which are cytoprotective, cardioprotective, and heat inducible. Since HSP70 expression is compromised in age-related inflammatory diseases, we argued whether the capacity of triggering a robust heat shock (HS) response would be still present after E2 withdrawal. Hence, we studied the effects of HS treatment (hot tub) in female Wistar rats subjected to bilateral ovariectomy (OVX) after a 7-day washout period. Twelve h after HS, the animals were killed and aortic arches were surgically excised for molecular analyses. The results were compared with oxidative stress markers in the plasma (superoxide dismutase, catalase, and lipoperoxidation) because HSP70 expression is also sensitive to redox regulation. Extracellular (plasma) to intracellular HSP70 ratio, an index of systemic inflammatory status, was also investigated. The results showed that HS response was preserved in OVX animals, as inferred from HSP70 expression (up to 40% rise, p < 0.01) in the aortas, which was accompanied by no further alterations in oxidative stress, hematological parameters, and glycemic control either. This suggests that the lack of estrogen per se could not be solely ascribed as the unique source of low HSP70 expression as observed in long-term post-menopausal individuals. As a consequence, periodic evaluation of HSP70 status (iHSP70 vs. eHSP70) may be of clinical relevance because decreased HS response capacity is at the center of the onset of menopause-related dysfunctions.


Asunto(s)
Biomarcadores/metabolismo , Estrógenos/deficiencia , Respuesta al Choque Térmico , Estrés Oxidativo , Animales , Aorta/metabolismo , Femenino , Proteínas HSP70 de Choque Térmico/metabolismo , Calor , Ovariectomía , Ratas
9.
Mediators Inflamm ; 2015: 249205, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25814786

RESUMEN

Recent evidence shows divergence between the concentrations of extracellular 70 kDa heat shock protein [eHSP70] and its intracellular concentrations [iHSP70] in people with type 2 diabetes (T2DM). A vital aspect regarding HSP70 physiology is its versatility to induce antagonistic actions, depending on the location of the protein. For example, iHSP70 exerts a powerful anti-inflammatory effect, while eHSP70 activates proinflammatory pathways. Increased eHSP70 is associated with inflammatory and oxidative stress conditions, whereas decreased iHSP70 levels are related to insulin resistance in skeletal muscle. Serum eHSP70 concentrations are positively correlated with markers of inflammation, such as C-reactive protein, monocyte count, and TNF-α, while strategies to enhance iHSP70 (e.g., heat treatment, chemical HSP70 inducers or coinducers, and physical exercise) are capable of reducing the inflammatory profile and the insulin resistance state. Here, we present recent findings suggesting that imbalances in the HSP70 status, described by the [eHSP70]/[iHSP70] ratio, may be determinant to trigger a chronic proinflammatory state that leads to insulin resistance and T2DM development. This led us to hypothesize that changes in this ratio value could be used as a biomarker for the management of the inflammatory response in insulin resistance and diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/etiología , Ejercicio Físico , Proteínas HSP70 de Choque Térmico/fisiología , Inflamación/complicaciones , Proteínas HSP70 de Choque Térmico/análisis , Humanos , Resistencia a la Insulina , Células Secretoras de Insulina/fisiología , Obesidad/complicaciones
10.
Int J Sport Nutr Exerc Metab ; 25(2): 188-97, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25202991

RESUMEN

Liver L-glutamine is an important vehicle for the transport of ammonia and intermediary metabolism of amino acids between tissues, particularly under catabolic situations, such as high-intensity exercise. Hence, the aim of this study was to investigate the effects of oral supplementations with L-glutamine in its free or dipeptide forms (with L-alanine) on liver glutamine-glutathione (GSH) axis, and 70 kDa heat shock proteins (HSP70)/heat shock transcription factor 1 (HSF1) expressions. Adult male Wistar rats were 8-week trained (60 min/day, 5 days/week) on a treadmill. During the last 21 days, the animals were daily supplemented with 1 g of L-glutamine/kg body weight per day in either l-alanyl-L-glutamine dipeptide (DIP) form or a solution containing L-glutamine and l-alanine in their free forms (GLN+ALA) or water (controls). Exercise training increased cytosolic and nuclear HSF1 and HSP70 expression, as compared with sedentary animals. However, both DIP and GLN+ALA supplements enhanced HSF1 expression (in both cytosolic and nuclear fractions) in relation to exercised controls. Interestingly, HSF1 rises were not followed by enhanced HSP70 expression. DIP and GLN+ALA supplements increased plasma glutamine concentrations (by 62% and 59%, respectively) and glutamine to glutamate plasma ratio in relation to trained controls. This was in parallel with a decrease in plasma ammonium levels. Supplementations increased liver GSH (by 90%), attenuating the glutathione disulfide (GSSG) to GSH ratio, suggesting a redox state protection. In conclusion, oral administration with DIP and GLN+ALA supplements in endurance-trained rats improve liver glutamine-GSH axis and modulate HSF1 pathway.


Asunto(s)
Suplementos Dietéticos , Glutamina/farmacología , Glutatión/metabolismo , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Condicionamiento Físico Animal , Resistencia Física/fisiología , Adaptación Fisiológica/efectos de los fármacos , Compuestos de Amonio/sangre , Animales , Glutamina/sangre , Glutamina/metabolismo , Disulfuro de Glutatión/metabolismo , Proteínas de Choque Térmico/metabolismo , Hígado/metabolismo , Masculino , Oxidación-Reducción , Ratas Wistar , Factores de Transcripción/metabolismo
11.
Mol Cell Biochem ; 397(1-2): 97-107, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25096025

RESUMEN

The inducible expression of the 70-kDa heat shock proteins (HSP70) is associated with homeostatically stressful situations. Stresses involving sympathetic nervous system (SNS) activation, including α1-adrenergic agonists and physical exercise, are capable of inducing HSP70 expression and release of the HSP70 inducible form, HSP72. However, whether hypoglycaemia is capable of influencing HSP70 status under a stressful situation such as insulin-induced hypoglycaemia (IIH), which also involves SNS activation, is unsettled. Hence, we decided to investigate whether the predominant signal for HSP70 expression and delivery into the blood comes from either low glucose, high insulin, or both during short-term IIH (STIIH) and long-term IIH (LTIIH). Our data indicated that low glucose level (up to 1.56 ± 0.14 mM), but not insulin, is the triggering factor responsible for a dramatic rise in HSP72 plasma concentrations (from 0.15 ± 0.01 in fed state to 0.77 ± 0.13 ng/mL during hypoglycaemic episodes). This was observed in parallel with up to 7-fold increases in interleukin-6 (IL-6) but not interleukin-10 (IL-10) or tumour necrosis factor-α (TNF-α) at STIIH. Together, the observations may suggest that HSP72 is released under hypoglycaemic conditions as a part of the homeostatic stress response, whereas at long-term, both hypoglycaemia and insulin may influence HSP72 expression in the liver, but not in kidneys. Secreted extracellular HSP72 (eHSP72) may be purely a danger signal to all the tissues of the body for the enhancement of immune and metabolic surveillance state or actively participates in glycaemic control under stressful situations.


Asunto(s)
Proteínas del Choque Térmico HSP72/sangre , Hipoglucemia/sangre , Hipoglucemiantes/efectos adversos , Insulina/efectos adversos , Interleucina-10/sangre , Interleucina-6/sangre , Hígado/metabolismo , Factor de Necrosis Tumoral alfa/sangre , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Hipoglucemia/inducido químicamente , Hipoglucemiantes/farmacología , Insulina/farmacología , Masculino , Ratas , Ratas Wistar , Factores de Tiempo
12.
Cell Stress Chaperones ; 29(1): 116-142, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244765

RESUMEN

The heat shock response (HSR) is a crucial biochemical pathway that orchestrates the resolution of inflammation, primarily under proteotoxic stress conditions. This process hinges on the upregulation of heat shock proteins (HSPs) and other chaperones, notably the 70 kDa family of heat shock proteins, under the command of the heat shock transcription factor-1. However, in the context of chronic degenerative disorders characterized by persistent low-grade inflammation (such as insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular diseases) a gradual suppression of the HSR does occur. This work delves into the mechanisms behind this phenomenon. It explores how the Western diet and sedentary lifestyle, culminating in the endoplasmic reticulum stress within adipose tissue cells, trigger a cascade of events. This cascade includes the unfolded protein response and activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome, leading to the emergence of the senescence-associated secretory phenotype and the propagation of inflammation throughout the body. Notably, the activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome not only fuels inflammation but also sabotages the HSR by degrading human antigen R, a crucial mRNA-binding protein responsible for maintaining heat shock transcription factor-1 mRNA expression and stability on heat shock gene promoters. This paper underscores the imperative need to comprehend how chronic inflammation stifles the HSR and the clinical significance of evaluating the HSR using cost-effective and accessible tools. Such understanding is pivotal in the development of innovative strategies aimed at the prevention and treatment of these chronic inflammatory ailments, which continue to take a heavy toll on global health and well-being.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Factores de Transcripción del Choque Térmico , Inflamasomas/metabolismo , Inflamasomas/farmacología , Respuesta al Choque Térmico , Proteínas de Choque Térmico/metabolismo , Inflamación , ARN Mensajero , Proteínas NLR/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo
13.
Cell Stress Chaperones ; 29(1): 66-87, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309688

RESUMEN

Effective resolution of inflammation via the heat shock response (HSR) is pivotal in averting the transition to chronic inflammatory states. This transition characterizes a spectrum of debilitating conditions, including insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments. This manuscript explores a range of physiological, pharmacological, and nutraceutical interventions aimed at reinstating the HSR in the context of chronic low-grade inflammation, as well as protocols to assess the HSR. Monitoring the progression or suppression of the HSR in patients and laboratory animals offers predictive insights into the organism's capacity to combat chronic inflammation, as well as the impact of exercise and hyperthermic treatments (e.g., sauna or hot tub baths) on the HSR. Interestingly, a reciprocal correlation exists between the expression of HSR components in peripheral blood leukocytes (PBL) and the extent of local tissue proinflammatory activity in individuals afflicted by chronic inflammatory disorders. Therefore, the Heck index, contrasting extracellular 70 kDa family of heat shock proteins (HSP70) (proinflammatory) and intracellular HSP70 (anti-inflammatory) in PBL, serves as a valuable metric for HSR assessment. Our laboratory has also developed straightforward protocols for evaluating HSR by subjecting whole blood samples from both rodents and human volunteers to ex vivo heat challenges. Collectively, this discussion underscores the critical role of HSR disruption in the pathogenesis of chronic inflammatory states and emphasizes the significance of simple, cost-effective tools for clinical HSR assessment. This understanding is instrumental in the development of innovative strategies for preventing and managing chronic inflammatory diseases, which continue to exert a substantial global burden on morbidity and mortality.


Asunto(s)
Diabetes Mellitus Tipo 2 , Animales , Humanos , Respuesta al Choque Térmico , Proteínas de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Inflamación , Enfermedad Crónica
14.
Cell Stress Chaperones ; 29(1): 175-200, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38331164

RESUMEN

The heat shock response (HSR) is an ancient and evolutionarily conserved mechanism designed to restore cellular homeostasis following proteotoxic challenges. However, it has become increasingly evident that disruptions in energy metabolism also trigger the HSR. This interplay between proteostasis and energy regulation is rooted in the fundamental need for ATP to fuel protein synthesis and repair, making the HSR an essential component of cellular energy management. Recent findings suggest that the origins of proteostasis-defending systems can be traced back over 3.6 billion years, aligning with the emergence of sugar kinases that optimized glycolysis around 3.594 billion years ago. This evolutionary connection is underscored by the spatial similarities between the nucleotide-binding domain of HSP70, the key player in protein chaperone machinery, and hexokinases. The HSR serves as a hub that integrates energy metabolism and resolution of inflammation, further highlighting its role in maintaining cellular homeostasis. Notably, 5'-adenosine monophosphate-activated protein kinase emerges as a central regulator, promoting the HSR during predominantly proteotoxic stress while suppressing it in response to predominantly metabolic stress. The complex relationship between 5'-adenosine monophosphate-activated protein kinase and the HSR is finely tuned, with paradoxical effects observed under different stress conditions. This delicate equilibrium, known as caloristasis, ensures that cellular homeostasis is maintained despite shifting environmental and intracellular conditions. Understanding the caloristatic controlling switch at the heart of this interplay is crucial. It offers insights into a wide range of conditions, including glycemic control, obesity, type 2 diabetes, cardiovascular and neurodegenerative diseases, reproductive abnormalities, and the optimization of exercise routines. These findings highlight the profound interconnectedness of proteostasis and energy metabolism in cellular function and adaptation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteostasis , Humanos , Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Adenosina Monofosfato/metabolismo , Proteínas Quinasas/metabolismo
15.
J Physiol Biochem ; 80(1): 161-173, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37930617

RESUMEN

Resistance training (RT) can increase the heat shock response (HSR) in the elderly. As middle-aged subjects already suffer physiological declines related to aging, it is hypothesized that RT may increase the HSR in these people. To assess the effects of resistance training on heat shock response, intra and extracellular HSP70, oxidative stress, inflammation, body composition, and metabolism in middle-aged subjects. Sixteen volunteers (40 - 59 years) were allocated to two groups: the trained group (n = 7), which performed 12 weeks of RT; and the physically inactive-control group (n = 9), which did not perform any type of exercise. The RT program consisted of 9 whole-body exercises (using standard gym equipment) and functional exercises, carried out 3 times/week. Before and after the intervention, body composition, muscle mass, strength, functional capacity, and blood sample measurements (lipid profile, glucose, insulin, oxidative damage, TNF-α, the HSR, HSP70 expression in leukocytes, and HSP72 in plasma) were performed. The HSR analysis demonstrated that this response is maintained at normal levels in middle-aged people and that RT did not cause any improvement. Also, RT increases muscle mass, strength, and functional capacity. Despite no additional changes of RT on the antioxidant defenses (catalase, glutathione peroxidase, and reductase) or inflammation, lipid peroxidation was diminished by RT (group x time interaction, p = 0.009), indicating that other antioxidant defenses may be improved after RT. HSR is preserved in middle-aged subjects without metabolic complications. In addition, RT reduces lipid peroxidation and can retard muscle mass and strength loss related to the aging process.


Asunto(s)
Respuesta al Choque Térmico , Entrenamiento de Fuerza , Anciano , Humanos , Persona de Mediana Edad , Antioxidantes , Respuesta al Choque Térmico/fisiología , Inflamación/metabolismo , Estrés Oxidativo/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo
16.
Hematol Transfus Cell Ther ; 46(1): 67-71, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38326179

RESUMEN

To date, hydroxyurea is the only effective and safe drug that significantly reduces morbidity and mortality of individuals with Sickle cell disease. Twenty years of real-life experience has demonstrated that hydroxyurea reduces pain attacks, vaso-occlusive events, including acute chest syndrome, the number and duration of hospitalizations and the need for transfusion. The therapeutic success of hydroxyurea is directly linked to access to the drug, the dose used and adherence to treatment which, in part, is correlated to the availability of hydroxyurea. This consensus aims to reduce the number of mandatory exams needed to access the drug, prioritizing the requesting physician's report, without affecting patient safety.

17.
PLoS One ; 18(8): e0290331, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37651433

RESUMEN

Surrogate models are frequently used to replace costly engineering simulations. A single surrogate is frequently chosen based on previous experience or by fitting multiple surrogates and selecting one based on mean cross-validation errors. A novel stacking strategy will be presented in this paper. This new strategy results from reinterpreting the model selection process based on the generalization error. For the first time, this problem is proposed to be translated into a well-studied financial problem: portfolio management and optimization. In short, it is demonstrated that the individual residues calculated by leave-one-out procedures are samples from a given random variable ϵi, whose second non-central moment is the i-th model's generalization error. Thus, a stacking methodology based solely on evaluating the behavior of the linear combination of the random variables ϵi is proposed. At first, several surrogate models are calibrated. The Directed Bubble Hierarchical Tree (DBHT) clustering algorithm is then used to determine which models are worth stacking. The stacking weights can be calculated using any financial approach to the portfolio optimization problem. This alternative understanding of the problem enables practitioners to use established financial methodologies to calculate the models' weights, significantly improving the ensemble of models' out-of-sample performance. A study case is carried out to demonstrate the applicability of the new methodology. Overall, a total of 124 models were trained using a specific dataset: 40 Machine Learning models and 84 Polynomial Chaos Expansion models (which considered 3 types of base random variables, 7 least square algorithms for fitting the up to fourth order expansion's coefficients). Among those, 99 models could be fitted without convergence and other numerical issues. The DBHT algorithm with Pearson correlation distance and generalization error similarity was able to select a subgroup of 23 models from the 99 fitted ones, implying a reduction of about 77% in the total number of models, representing a good filtering scheme which still preserves diversity. Finally, it has been demonstrated that the weights obtained by building a Hierarchical Risk Parity (HPR) portfolio perform better for various input random variables, indicating better out-of-sample performance. In this way, an economic stacking strategy has demonstrated its worth in improving the out-of-sample capabilities of stacked models, which illustrates how the new understanding of model stacking methodologies may be useful.


Asunto(s)
Algoritmos , Ingeniería , Femenino , Embarazo , Humanos , Análisis por Conglomerados , Generalización Psicológica , Aprendizaje Automático
18.
Life Sci ; 315: 121357, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36634864

RESUMEN

AIMS: Although the benefits of exercise can be potentiated by fasting in healthy subjects, few studies evaluated the effects of this intervention on the metabolism of obese subjects. This study investigated the immediate effects of a single moderate-intensity exercise bout performed in fast or fed states on the metabolism of gastrocnemius and soleus of lean and obese rats. MAIN METHODS: Male rats received a high-fat diet (HFD) for twelve weeks to induce obesity or were fed standard diet (SD). After this period, the animals were subdivided in groups: fed and rest (FER), fed and exercise (30 min treadmill, FEE), 8 h fasted and rest (FAR) and fasted and exercise (FAE). Muscle samples were used to investigate the oxidative capacity and gene expression of AMPK, PGC1α, SIRT1, HSF1 and HSP70. KEY FINDINGS: In relation to lean animals, obese animals' gastrocnemius glycogen decreased 60 %, triglycerides increased 31 %; glucose and alanine oxidation decreased 26 % and 38 %, respectively; in soleus, triglycerides reduced 46 % and glucose oxidation decreased 37 %. Exercise and fasting induced different effects in glycolytic and oxidative muscles of obese rats. In soleus, fasting exercise spared glycogen and increased palmitate oxidation, while in gastrocnemius, glucose oxidation increased. In obese animals' gastrocnemius, AMPK expression decreased 29 % and SIRT1 increased 28 % in relation to lean. The AMPK response was more sensitive to exercise and fasting in lean than obese rats. SIGNIFICANCE: Exercise and fasting induced different effects on the metabolism of glycolytic and oxidative muscles of obese rats that can promote health benefits in these animals.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Sirtuina 1 , Animales , Masculino , Ratas , Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Promoción de la Salud , Insulina/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Sirtuina 1/metabolismo , Triglicéridos/metabolismo
19.
Cell Stress Chaperones ; 28(6): 721-729, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37462825

RESUMEN

Being overweight is already considered a metabolic risk factor, which can be overcome by increasing cardiorespiratory fitness (CRF). Acute exercise is known to induce changes in plasma hormones and heat shock proteins release. However, there is a lack of studies investigating the impact of body composition and CRF on these variables following acute aerobic exercise. To assess the influence of body composition and cardiorespiratory fitness on plasma heat shock protein 72 kDa (HSP72), norepinephrine (NE), insulin, and glucose responses to an acute aerobic exercise bout in the fed state. Twenty-four healthy male adults were recruited and allocated into three groups: overweight sedentary (n = 8), normal weight sedentary (n = 8), and normal weight active (n = 8). The volunteers performed an acute moderate exercise session on a treadmill at 70% of VO2 peak. Blood samples were drawn at baseline, immediately post-exercise, and at 1-h post-exercise. The exercise session did not induce changes in HSP72 nor NE but changes in glucose and insulin were affected by body mass index. Also, subjects with elevated CRF maintain reduced NE through exercise. At baseline, the overweight sedentary group showed elevated NE, insulin, and glucose; these last two impacting the HOMA-IR index. Thirty minutes of aerobic exercise at 70% VO2 peak, in the fed state, did not change the levels of plasma NE and HSP72. Elevated body composition seems to impact metabolic profile and increase sympathetic activity. Conversely, subjects with increased cardiorespiratory fitness seem to have attenuated sympathetic activity.


Asunto(s)
Capacidad Cardiovascular , Insulina , Adulto , Humanos , Masculino , Sobrepeso , Glucosa , Proteínas del Choque Térmico HSP72 , Capacidad Cardiovascular/fisiología , Norepinefrina , Ejercicio Físico/fisiología , Composición Corporal
20.
Polymers (Basel) ; 15(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36616356

RESUMEN

The circular economy plays an important role in the preparation and recycling of polymers. Research groups in different fields, such as materials science, pharmaceutical and engineering, have focused on building sustainable polymers to minimize the release of toxic products. Recent studies focused on the circular economy have suggested developing new polymeric materials based on renewable and sustainable sources, such as using biomass waste to obtain raw materials to prepare new functional bio-additives. This review presents some of the main characteristics of common polymer additives, such as antioxidants, antistatic agents and plasticizers, and recent research in developing bio-alternatives. Examples of these alternatives include the use of polysaccharides from agro-industrial waste streams that can be used as antioxidants, and chitosan which can be used as an antistatic agent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA