Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nano Lett ; 21(19): 8298-8303, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34546067

RESUMEN

The optical properties of chiral plasmonic metasurfaces depend strongly on their architecture, in particular the orientation and spacing between the individual building blocks assembled into large arrays. However, methods to obtain chiral metamaterials with fully tunable chiroptical properties in the UV, visible, and near-infrared range are scarce. Here, we show that the chiroptical properties of silver nanowires assembled in helical nanostructures by grazing incidence spraying and Layer-by-Layer assembly can be finely tuned over a broad wavelength range using simple design principles. The angle between the oriented nanowire layers controls the intensity of the circular dichroism, reaching ellipticity values higher than 13° and g-factor values up to 1.6, while the shape of the circular dichroism spectra depends strongly on the spacing between the layers which can be tuned at the nanometer scale. The structure-dependent optical properties of the assembly are successfully modeled using a transfer matrix approach.

2.
Chem Soc Rev ; 49(2): 509-553, 2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-31845689

RESUMEN

One-dimensional (1D) nanoobjects have strongly anisotropic physical properties which are averaged out and cannot be exploited in disordered systems. The goal of the present review is to describe the current methods for preparing macroscopic composite films in which the long axis of individual 1D-nanoobjects is more or less parallel to the x,y-plane of the substrate as well as to each other (alignment direction). Such structures are generally described as in-plane anisotropic and many of their physical properties show minima or maxima parallel to the alignment direction. Optical polarizers are a typical class of such materials, but anisotropic materials properties can enhance the performance of devices and materials over many length scales in various disciplines of materials science including electronic devices, environmental sensors, energy saving and energy generation applications, plasmonic devices, Surface-Enhanced Raman Scattering (SERS) and biological applications. The reviewed alignment methods fall into two categories: techniques in which all nanoobjects remain in the x,y-plane and the in-plane densities and alignment are controlled; and techniques allowing building complex architectures in which each stratum of multilayered or stacked films may differ in chemical nature or alignment direction or both. This review serves a purpose to provide a platform to inspire new alignment approaches with improved assembly quality and upscaling potential and new applications with enhanced performance by alignment.

3.
Nano Lett ; 14(10): 5609-15, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25198655

RESUMEN

The physical and chemical properties of macromolecules like proteins are strongly dependent on their conformation. The degrees of freedom of their chemical bonds generate a huge conformational space, of which, however, only a small fraction is accessible in thermal equilibrium. Here we show that soft-landing electrospray ion beam deposition (ES-IBD) of unfolded proteins allows to control their conformation. The dynamics and result of the deposition process can be actively steered by selecting the molecular ion beam's charge state or tuning the incident energy. Using these parameters, protein conformations ranging from fully extended to completely compact can be prepared selectively on a surface, as evidenced on the subnanometer/amino acid resolution level by scanning tunneling microscopy (STM). Supported by molecular dynamics (MD) simulations, our results demonstrate that the final conformation on the surface is reached through a mechanical deformation during the hyperthermal ion surface collision. Our experimental results independently confirm the findings of ion mobility spectrometry (IMS) studies of protein gas phase conformations. Moreover, we establish a new route for the processing of macromolecular materials, with the potential to reach conformations that would be inaccessible otherwise.

4.
Adv Mater ; : e2401742, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635929

RESUMEN

Cellulose-based nanocomposites are highly appealing for the development of next-generation sustainable functional materials. Although many advances have been made in this direction, the true potential of fibrillar nanocomposites has yet to be realized because available fabrication approaches are inadequate for achieving precise structural control at the sub-micrometer scale. Here a spray-assisted alignment methodology of cellulose nanofibrils is combined with the layer-by-layer assembly into an additive manufacturing process in which the alignment direction of each cellulose layer is rationally selected to achieve thin films with a helicoidal arrangement of the nanofibrils. The helicoidal structure of the films is verified by measuring the circular dichroism (CD) of the samples. The sign and position of the structural CD peak show that the handedness and the pitch of the chiral structures can be easily tuned by deliberately selecting simple parameters, such as the number of consecutive cellulose layers sprayed in the same direction, and the angle of rotation between successive stacks of layers. To the authors' knowledge, this approach is unique as it offers the possibility to prepare complex nanocomposite architectures with various nanoscale-controlled sub-structures from different anisometric objects, which is enabling novel designs of composite films with damage-resistant and/or optical filtering functionalities.

5.
Small ; 8(1): 108-15, 2012 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-22095862

RESUMEN

A co-tunneling charge-transfer process dominates the electrical properties of a nanometer-sized "slice" in a nanoparticle network, which results in universal scaling of the conductance with temperature and bias voltage, as well as enhanced spintronics properties. By designing two large (10 µm) electrodes with short (60 nm) separation, access is obtained to transport dominated by charge transfer involving "nanoslices" made of three nanoparticles only. Magnetic iron oxide nanoparticle networks exhibit a magnetoresistance ratio that is not reachable by tunneling or hopping processes, thereby illustrating how such a size-matched planar device with dominant co-tunneling charge-transfer process is optimal for realizing multifunctional devices with enhanced change of conductance under external stimulus.

6.
ACS Appl Mater Interfaces ; 14(48): 54073-54080, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36401833

RESUMEN

The development of nanoscale composites with hierarchical architecture and complex anisotropies enables the fabrication of new classes of devices. Stretchable strain sensors have been developed in the past for applications in various fields such as wearable electronics and soft robotics, yet the sensing capacities of most of these sensors are independent of the direction of deformation. In the present work, we report on the preparation of a direction-sensitive strain sensor using the anisotropic optical properties of a monolayer of oriented plasmonic 1D nano-objects. Grazing incidence spraying (GIS) is used for depositing a monolayer of in-plane aligned silver nanowires with a controlled density on a deformable and transparent substrate. Using the selective excitation of transverse and longitudinal localized plasmon resonance modes of silver nanowires by polarized UV-visible-NIR spectroscopy, we show that the macroscopic anisotropic properties of the monolayer upon stretching are highly dependent on the stretching direction and light polarization. Measuring the polarized optical properties of the anisotropic thin films upon stretching thus allow for retrieving both the local strain and the direction of the deformation using a simple model.

7.
Int J Pharm X ; 4: 100130, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36156982

RESUMEN

Proteins are great therapeutic candidates as endogenous biomolecules providing a wide range of applications. However, their delivery suffers from some limitations and specifically designed delivery systems having an efficient protein anchoring and delivery strategy are still needed. In this work, we propose to combine large pore stellate mesoporous silica (STMS) with isobutyramide (IBAM), as a "glue" molecule which has been shown promising for immobilization of various biomacromolecules at silica surface. We address here for the first time the ability of such IBAM-modified NPs to sustainably deliver proteins over a prolonged time. In this work, a quantitative loading study of proteins (serum albumin (HSA), peroxidase (HRP), immunoglobulin (IgG) and polylysine (PLL)) on STMS@IBAM is first presented using three complementary detection techniques to ensure precision and avoid protein quantification issues. The results demonstrated a high loading capacity for HSA and HRP (≥ ca. 350 µg.mg-1) but a moderate one for IgG and PLL. After evaluating the physicochemical properties of the loaded particles and their stability over scaling-up and washings, the ability of STMS@IBAM to release proteins over prolonged time was evaluated in equilibrium (static) and flow mimicking (dynamic) conditions and at different temperatures (25, 37, 45 °C). Results show not only the potential of such "glue" functionalized STMS to release proteins in a sustained way, but also the retention of the biological activity of immobilized and released HRP, used as an enzyme model. Finally, an AFM-force spectroscopy study was conducted to decipher the interactions between IBAM and proteins, showing the involvement of different interactions in the adsorption and release processes.

8.
Langmuir ; 27(10): 6235-43, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21495667

RESUMEN

Assemblies of magnetic nanoparticles (NPs) are intensively studied due to their high potential applications in spintronic, magnetic and magneto-electronic. The fine control over NP density, interdistance, and spatial arrangement onto substrates is of key importance to govern the magnetic properties through dipolar interactions. In this study, magnetic iron oxide NPs have been assembled on surfaces patterned with self-assembled monolayers (SAMs) of mixed organic molecules. The modification of the molar ratio between coadsorbed 11-mercaptoundecanoic acid (MUA) and mercaptododecane (MDD) on gold substrates is shown to control the size of NPs domains and thus to modulate the characteristic magnetic properties of the assemblies. Moreover, NPs can be used to indirectly probe the structure of SAMs in domains at the nanometer scale.

11.
Nanoscale ; 13(19): 8958-8965, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33969852

RESUMEN

Thin deposits of aligned semiconducting titanium oxide and of zinc oxide nanowires are prepared by grazing incidence spraying on transparent substrates. By measuring the transmittance of linearly polarized light of these anisotropic assemblies as compared to that of randomly oriented nanowires and of spherical nanoparticles, we find that titanium oxide nanowires exhibit an orientation-dependent variation of the apparent optical band gap energy at room temperature (>100 meV), depending on the direction of the polarization of the light with respect to the direction of alignment of the nanowires.

12.
ACS Nano ; 15(8): 13653-13661, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34375085

RESUMEN

Chirality is found at all length scales in nature, and chiral metasurfaces have recently attracted attention due to their exceptional optical properties and their potential applications. Most of these metasurfaces are fabricated by top-down methods or bottom-up approaches that cannot be tuned in terms of structure and composition. By combining grazing incidence spraying of plasmonic nanowires and nanorods and Layer-by-Layer assembly, we show that nonchiral 1D nano-objects can be assembled into scalable chiral Bouligand nanostructures whose mesoscale anisotropy is controlled with simple macroscopic tools. Such multilayer helical assemblies of linearly oriented nanowires and nanorods display very high circular dichroism up to 13 000 mdeg and giant dissymmetry factors up to g ≈ 0.30 over the entire visible and near-infrared range. The chiroptical properties of the chiral multilayer stack are successfully modeled using a transfer matrix formalism based on the experimentally determined properties of each individual layer. The proposed approach can be extended to much more elaborate architectures and gives access to template-free and enantiomerically pure nanocomposites whose structure can be finely tuned through simple design principles.

13.
ACS Nano ; 14(4): 4111-4121, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32155050

RESUMEN

Chiral materials appear as excellent candidates to control and manipulate the polarization of light in optical devices. In nanophotonics, the self-assembly of colloidal plasmonic nanoparticles gives rise to strong resonances in the visible range, and when such organizations are chiral, a strong chiroplasmonic effect can be observed. In the present work, we describe the optical properties of chiral artificial nanophotonic materials, Goldhelices, which are hierarchically organized by grazing incidence spraying. These Goldhelices are made by plasmonic nanoparticles (gold) grafted onto helical templates made from silica nanohelices. A comparison of oriented versus non-oriented surfaces has been performed by Mueller matrix polarimetry, showing the importance of the organization of the Goldhelices regarding their interaction with light. Moreover, mono- versus multilayer photonic films are created, and the measured optical properties are discussed and compared to simulations.

14.
J Am Soc Mass Spectrom ; 29(4): 761-773, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29468502

RESUMEN

Transfer capillaries are the preferred means to transport ions, generated by electrospray ionization, from ambient conditions to vacuum. During the transfer of ions through the narrow, long tubes into vacuum, substantial losses are typical. However, recently it was demonstrated that these losses can be avoided altogether. To understand the experimental observation and provide a general model for the ion transport, here, we investigate the ion transport through capillaries by numerical simulation of interacting ions. The simulation encompasses all relevant factors, such as space charge, diffusion, gas flow, and heating. Special attention is paid to the influence of the gas flow on the transmission and especially the change imposed by heating. The gas flow is modeled by a one-dimensional gas dynamics description. A large number of ions are treated as point particles in this gas flow. This allows to investigate the influence of the capillary heating on the gas flow and by this on the ion transport. The results are compared with experimental findings. Graphical Abstract ᅟ.

15.
ACS Appl Mater Interfaces ; 10(3): 3046-3057, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29268607

RESUMEN

The functional properties of nanoparticle thin films depend strongly on the arrangement of the nanoparticles within the material. In particular, anisotropic optoelectronic properties can be achieved through the aligned assembly of 1D nanomaterials such as silver nanowires (AgNWs). However, the control of the hierarchical organization of these nanoscale building blocks across multiple length scales and over large areas is still a challenge. Here, we show that the oriented deposition of AgNWs using grazing incidence spraying of the nano-object suspensions on a substrate comprising parallel surface wrinkles readily produces highly oriented monolayer thin films on macroscopic areas (>5 × 5 mm2). The use of textured substrates enhances the degree of ordering as compared to flat ones and increases the area over which AgNWs are oriented. The resulting microscopic linear arrangement of AgNWs evaluated by scanning electron microscopy (SEM) reflects in a pronounced macroscopic optical anisotropy measured by conventional polarized UV-vis-NIR spectroscopy. The enhanced ordering obtained when spraying is done in the same direction as the wrinkles makes this approach more robust against small rotational offsets during preparation. On the contrary, the templating effect of the wrinkle topography can even dominate the shear-driven alignment when spraying is performed perpendicular to the wrinkles: the concomitant but opposing influence of topographic confinement (alignment along the wrinkles) and of spray-induced shear forces (orientation along the spraying direction) lead to films in which the predominant orientation of AgNWs gradually changes from one direction to its perpendicular one over the same substrate in a single processing step. This demonstrates that exploiting the subtle balance between shear forces and substrate-nanowire interactions mediated by wrinkles offers a new way to control the self-assembly of nanoparticles into more complex patterns.

16.
ACS Nano ; 11(1): 84-94, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28114762

RESUMEN

We present a simple yet efficient method for orienting cellulose nanofibrils in layer-by-layer assembled films through spray-assisted alignment. While spraying at 90° against a receiving surface produces films with homogeneous in-plane orientation, spraying at smaller angles causes a macroscopic directional surface flow of liquid on the receiving surface and leads to films with substantial in-plane anisotropy when nanoscale objects with anisotropic shapes are used as components. First results with cellulose nanofibrils demonstrate that such fibrils are easily aligned by grazing incidence spraying to yield optically birefringent films over large surface areas. We show that the cellulosic nanofibrils are oriented parallel to the spraying direction and that the orientational order depends for example on the distance of the receiving surface from the spray nozzle. The alignment of the nanofibrils and the in-plane anisotropy of the films were independently confirmed by atomic force microscopy, optical microscopy between crossed polarizers, and the ellipsometric determination of the apparent refractive index of the film as a function of the in-plane rotation of the sample with respect to the plane of incidence of the ellipsometer.

18.
Nanoscale ; 5(4): 1507-16, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23306456

RESUMEN

Self-assembly of nanoparticles (NPs) into tailored structures is a promising strategy for the production and design of materials with new functions. In this work, 2D arrays of iron oxide NPs with interparticle distances tuned by grafting fatty acids and dendritic molecules at the NPs surface have been obtained over large areas with high density using the Langmuir-Blodgett technique. The anchoring agent of molecules and the Janus structure of NPs are shown to be key parameters driving the deposition. Finally the influence of interparticle distance on the collective magnetic properties in powders and in monolayers is clearly demonstrated by DC and AC SQUID measurements. The blocking temperature T(B) increases as the interparticle distance decreases, which is consistent with the fact that dipolar interactions are responsible for this increase. Dipolar interactions are found to be stronger for particles assembled in thin films compared to powdered samples and may be described by using the Vogel Fulcher model.


Asunto(s)
Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestructura , Modelos Químicos , Simulación por Computador , Dendrímeros/química , Campos Magnéticos , Ensayo de Materiales , Polvos
19.
Nanoscale ; 3(11): 4696-705, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21975947

RESUMEN

Self-assembled monolayers (SAMs) of organic molecules are of exceptional technological importance since they represent a convenient, flexible, and simple system for tuning the chemical and physical properties of surfaces. The fine control of surface properties is directly dependent on the structure of mixed SAMs which is difficult to characterize at the nanoscale with usual techniques such as scanning probe microscopies. In this study, we report on a general method to investigate at the nanoscale the structure of molecular patterns which consist in SAMs of two components. Iron oxide nanoparticles (NPs) have been used as probing agents to study indirectly the structure of mixed SAMs. Mixed SAMs were prepared by the replacement of mercaptododecane (MDD) adsorbed by mercaptoundecanoic acid (MUA) molecules on gold substrates. Therefore, the SAM surface displays both chelating carboxylic terminal groups and non-chelating methylene terminal groups. As NPs have been previously demonstrated to specifically interact with carboxylic acid groups, the increasing density in NPs was correlated with the evolution of the COOH/CH(3) terminal groups ratio. Therefore the structure of mixed SAMs was studied indirectly as well as the kinetic of the replacement reaction and its mechanism. With this aim, we took advantage of the SPR properties of the gold substrate and of the high refractive index of iron oxide nanoparticles to follow their assembling on mixed SAMs as a time resolved study. The high sensitivity and tuning of the SPR signal over a wide range of wavelengths are correlated with the NP density. Furthermore, SEM combined with image analysis has allowed studying the replacement rate of MDD by MUA in SAMs. We took also advantages of the magnetic properties of NPs to evaluate qualitatively the replacement of thiol molecules.


Asunto(s)
Mezclas Complejas/análisis , Compuestos Férricos/química , Micromanipulación/instrumentación , Técnicas de Sonda Molecular/instrumentación , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Magnetismo , Microquímica/instrumentación , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA