Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39080120

RESUMEN

INTRODUCTION: Homologous recombination (HR) is a crucial DNA-repair mechanism, and its disruption can lead to the accumulation of mutations that initiate and promote cancer formation. The key HR genes, BRCA1 and BRCA2, are particularly significant as their germline pathogenic variants are associated with a hereditary predisposition to breast and/or ovarian cancer. MATERIALS AND METHODS: The study was performed on 45 FFPE breast cancer tissues obtained from 24 and 21 patients, with and without the germline BRCA1/2 mutation, respectively. The expression of 11 genes: BRCA1, BRCA2, ATM, BARD1, FANCA, FANCB, FANCI, RAD50, RAD51D, BRIP1, and CHEK2 was assessed using Custom RT2 PCR Array (Qiagen), and results were analysed using R. RESULTS: Cancer tissues from patients with BRCA1 or BRCA2 germline mutations displayed no significant differences in the expression of the selected HR genes compared to BRCA1 or BRCA2 wild-type cancer tissues. In BRCA1mut cancer tissues, BRCA1 expression was significantly higher than in BRCA2mut and BRCA wild-type cancer tissues. CONCLUSIONS: In cancer tissues harbouring either BRCA1 or BRCA2 germline mutations, no significant differences in expression were observed at the mRNA level of any tested HR genes, except BRCA1. However, the significant differences observed in BRCA1 expression between germline BRCA1mut, germline BRCA2mut and BRCA1/2wt tissues may indicate a compensatory mechanism at the mRNA level to mitigate the loss of BRCA1 function in the cells.

2.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055016

RESUMEN

The CpG island methylator phenotype (CIMP) can be regarded as the most notable emanation of epigenetic instability in cancer. Since its discovery in the late 1990s, CIMP has been extensively studied, mainly in colorectal cancers (CRC) and gliomas. Consequently, knowledge on molecular and pathological characteristics of CIMP in CRC and other tumour types has rapidly expanded. Concordant and widespread hypermethylation of multiple CpG islands observed in CIMP in multiple cancers raised hopes for future epigenetically based diagnostics and treatments of solid tumours. However, studies on CIMP in solid tumours were hampered by a lack of generalisability and reproducibility of epigenetic markers. Moreover, CIMP was not a satisfactory marker in predicting clinical outcomes. The idea of targeting epigenetic abnormalities such as CIMP for cancer therapy has not been implemented for solid tumours, either. Twenty-one years after its discovery, we aim to cover both the fundamental and new aspects of CIMP and its future application as a diagnostic marker and target in anticancer therapies.


Asunto(s)
Islas de CpG , Metilación de ADN , Epigénesis Genética , Regulación de la Expresión Génica , Animales , Biomarcadores , Biomarcadores de Tumor , Biología Computacional/métodos , Desarrollo de Medicamentos , Perfilación de la Expresión Génica , Humanos , Terapia Molecular Dirigida , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA