Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 152(4): 691-702, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23415220

RESUMEN

An adaptive variant of the human Ectodysplasin receptor, EDARV370A, is one of the strongest candidates of recent positive selection from genome-wide scans. We have modeled EDAR370A in mice and characterized its phenotype and evolutionary origins in humans. Our computational analysis suggests the allele arose in central China approximately 30,000 years ago. Although EDAR370A has been associated with increased scalp hair thickness and changed tooth morphology in humans, its direct biological significance and potential adaptive role remain unclear. We generated a knockin mouse model and find that, as in humans, hair thickness is increased in EDAR370A mice. We identify new biological targets affected by the mutation, including mammary and eccrine glands. Building on these results, we find that EDAR370A is associated with an increased number of active eccrine glands in the Han Chinese. This interdisciplinary approach yields unique insight into the generation of adaptive variation among modern humans.


Asunto(s)
Evolución Biológica , Receptor Edar/genética , Glándulas Exocrinas/fisiología , Cabello/fisiología , Ratones , Modelos Animales , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Evolución Molecular , Técnicas de Sustitución del Gen , Pleiotropía Genética , Haplotipos , Humanos , Ratones Endogámicos C57BL , Persona de Mediana Edad , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Cuero Cabelludo/fisiología , Alineación de Secuencia , Adulto Joven
2.
Mol Biol Evol ; 32(4): 835-45, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25739733

RESUMEN

Genomic data are rapidly resolving the tree of living species calibrated to time, the timetree of life, which will provide a framework for research in diverse fields of science. Previous analyses of taxonomically restricted timetrees have found a decline in the rate of diversification in many groups of organisms, often attributed to ecological interactions among species. Here, we have synthesized a global timetree of life from 2,274 studies representing 50,632 species and examined the pattern and rate of diversification as well as the timing of speciation. We found that species diversity has been mostly expanding overall and in many smaller groups of species, and that the rate of diversification in eukaryotes has been mostly constant. We also identified, and avoided, potential biases that may have influenced previous analyses of diversification including low levels of taxon sampling, small clade size, and the inclusion of stem branches in clade analyses. We found consistency in time-to-speciation among plants and animals, ∼2 My, as measured by intervals of crown and stem species times. Together, this clock-like change at different levels suggests that speciation and diversification are processes dominated by random events and that adaptive change is largely a separate process.


Asunto(s)
Biodiversidad , Eucariontes/genética , Especiación Genética , Evolución Molecular , Modelos Genéticos , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA