Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
FASEB J ; 38(7): e23602, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581236

RESUMEN

Neurotensin (NTS) is a 13-amino acid peptide which is highly expressed in the mammalian ovary in response to the luteinizing hormone surge. Antibody neutralization of NTS in the ovulatory follicle of the cynomolgus macaque impairs ovulation and induces follicular vascular dysregulation, with excessive pooling of red blood cells in the follicle antrum. We hypothesize that NTS is an essential intrafollicular regulator of vascular permeability. In the present study, follicle injection of the NTS receptor antagonist SR142948 also resulted in vascular dysregulation. To measure vascular permeability changes in vitro, primary macaque ovarian microvascular endothelial cells (mOMECs) were enriched from follicle aspirates and studied in vitro. When treated with NTS, permeability of mOMECs decreased. RNA sequencing (RNA-Seq) of mOMECs revealed high mRNA expression of the permeability-regulating adherens junction proteins N-cadherin (CDH2) and K-cadherin (CDH6). Immunofluorescent detection of CDH2 and CDH6 confirmed expression and localized these cadherins to the cell-cell boundaries, consistent with function as components of adherens junctions. mOMECs did not express detectable levels of the typical vascular endothelial cadherin, VE-cadherin (CDH5) as determined by RNA-Seq, qPCR, western blot, and immunofluorescence. Knockdown of CDH2 or CDH6 via siRNA abrogated the NTS effect on mOMEC permeability. Collectively, these data suggest that NTS plays an ovulation-critical role in vascular permeability maintenance, and that CDH2 and CDH6 are involved in the permeability modulating effect of NTS on the ovarian microvasculature. NTS can be added to a growing number of angiogenic regulators which are critical for successful ovulation.


Asunto(s)
Células Endoteliales , Ovario , Femenino , Animales , Ovario/metabolismo , Células Endoteliales/metabolismo , Neurotensina/metabolismo , Uniones Adherentes/metabolismo , Permeabilidad Capilar , Cadherinas/genética , Cadherinas/metabolismo , Macaca/metabolismo , Permeabilidad , Endotelio Vascular/metabolismo , Mamíferos/metabolismo
2.
J Neuroinflammation ; 21(1): 194, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097742

RESUMEN

Chronic neuroinflammation and microglial activation are key mediators of the secondary injury cascades and cognitive impairment that follow exposure to repetitive mild traumatic brain injury (r-mTBI). Peroxisome proliferator-activated receptor-γ (PPARγ) is expressed on microglia and brain resident myeloid cell types and their signaling plays a major anti-inflammatory role in modulating microglial responses. At chronic timepoints following injury, constitutive PPARγ signaling is thought to be dysregulated, thus releasing the inhibitory brakes on chronically activated microglia. Increasing evidence suggests that thiazolidinediones (TZDs), a class of compounds approved from the treatment of diabetes mellitus, effectively reduce neuroinflammation and chronic microglial activation by activating the peroxisome proliferator-activated receptor-γ (PPARγ). The present study used a closed-head r-mTBI model to investigate the influence of the TZD Pioglitazone on cognitive function and neuroinflammation in the aftermath of r-mTBI exposure. We revealed that Pioglitazone treatment attenuated spatial learning and memory impairments at 6 months post-injury and reduced the expression of reactive microglia and astrocyte markers in the cortex, hippocampus, and corpus callosum. We then examined whether Pioglitazone treatment altered inflammatory signaling mechanisms in isolated microglia and confirmed downregulation of proinflammatory transcription factors and cytokine levels. To further investigate microglial-specific mechanisms underlying PPARγ-mediated neuroprotection, we generated a novel tamoxifen-inducible microglial-specific PPARγ overexpression mouse line and examined its influence on microglial phenotype following injury. Using RNA sequencing, we revealed that PPARγ overexpression ameliorates microglial activation, promotes the activation of pathways associated with wound healing and tissue repair (such as: IL10, IL4 and NGF pathways), and inhibits the adoption of a disease-associated microglia-like (DAM-like) phenotype. This study provides insight into the role of PPARγ as a critical regulator of the neuroinflammatory cascade that follows r-mTBI in mice and demonstrates that the use of PPARγ agonists such as Pioglitazone and newer generation TZDs hold strong therapeutic potential to prevent the chronic neurodegenerative sequelae of r-mTBI.


Asunto(s)
Disfunción Cognitiva , Microglía , PPAR gamma , Pioglitazona , Animales , Masculino , Ratones , Conmoción Encefálica/metabolismo , Conmoción Encefálica/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Pioglitazona/farmacología , Pioglitazona/uso terapéutico , PPAR gamma/metabolismo
3.
J Neuroinflammation ; 21(1): 130, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750510

RESUMEN

Epidemiological studies have unveiled a robust link between exposure to repetitive mild traumatic brain injury (r-mTBI) and elevated susceptibility to develop neurodegenerative disorders, notably chronic traumatic encephalopathy (CTE). The pathogenic lesion in CTE cases is characterized by the accumulation of hyperphosphorylated tau in neurons around small cerebral blood vessels which can be accompanied by astrocytes that contain phosphorylated tau, the latter termed tau astrogliopathy. However, the contribution of tau astrogliopathy to the pathobiology and functional consequences of r-mTBI/CTE or whether it is merely a consequence of aging remains unclear. We addressed these pivotal questions by utilizing a mouse model harboring tau-bearing astrocytes, GFAPP301L mice, subjected to our r-mTBI paradigm. Despite the fact that r-mTBI did not exacerbate tau astrogliopathy or general tauopathy, it increased phosphorylated tau in the area underneath the impact site. Additionally, gene ontology analysis of tau-bearing astrocytes following r-mTBI revealed profound alterations in key biological processes including immunological and mitochondrial bioenergetics. Moreover, gene array analysis of microdissected astrocytes accrued from stage IV CTE human brains revealed an immunosuppressed astroglial phenotype similar to tau-bearing astrocytes in the GFAPP301L model. Additionally, hippocampal reduction of proteins involved in water transport (AQP4) and glutamate homeostasis (GLT1) was found in the mouse model of tau astrogliopathy. Collectively, these findings reveal the importance of understanding tau astrogliopathy and its role in astroglial pathobiology under normal circumstances and following r-mTBI. The identified mechanisms using this GFAPP301L model may suggest targets for therapeutic interventions in r-mTBI pathogenesis in the context of CTE.


Asunto(s)
Acuaporina 4 , Astrocitos , Transportador 2 de Aminoácidos Excitadores , Ratones Transgénicos , Tauopatías , Proteínas tau , Animales , Humanos , Masculino , Ratones , Acuaporina 4/metabolismo , Acuaporina 4/genética , Astrocitos/metabolismo , Astrocitos/patología , Conmoción Encefálica/metabolismo , Conmoción Encefálica/patología , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Ratones Endogámicos C57BL , Fenotipo , Proteínas tau/metabolismo , Proteínas tau/genética , Tauopatías/metabolismo , Tauopatías/patología , Tauopatías/genética
4.
Exp Physiol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141846

RESUMEN

This research examined the impact of aerobic exercise intensity and dose on acute post-exercise cerebral shear stress and blood flow. Fourteen young adults (27 ± 5 years of age, eight females) completed a maximal oxygen uptake ( V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ ) treadmill test followed by three randomized study visits: treadmill exercise at 30% of V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ for 30 min, 70% of V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ for 30 min and 70% of V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ for a duration that resulted in caloric expenditure equal to that in the 30% V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ visit (EqEE). A venous blood draw and internal carotid artery (ICA) ultrasound were collected before and immediately following exercise. ICA diameter and blood velocity were determined using automated edge detection software, and blood flow was calculated. Using measures of blood viscosity, shear stress was calculated. Aerobic exercise increased ICA shear stress (time: P = 0.005, condition: P = 0.012) and the increase was greater following exercise at 70% V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ (∆4.1 ± 3.5 dyn/cm2) compared with 30% V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ (∆1.1 ± 1.9 dyn/cm2; P = 0.041). ICA blood flow remained elevated following exercise (time: P = 0.002, condition: P = 0.010) with greater increases after 70% V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ (Δ268 ± 150 mL/min) compared with 30% V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ (∆125 ± 149 mL/min; P = 0.041) or 70% V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ EqEE (∆127 ± 177 mL/min; P = 0.004). Therefore, aerobic exercise resulted in both intensity- and dose-dependent effects on acute post-exercise ICA blood flow whereby vigorous intensity exercise provoked a larger increase in ICA blood flow compared to light intensity exercise when performed at a higher dose.

5.
Exp Neurol ; 374: 114702, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38301863

RESUMEN

Repetitive mild traumatic brain injuries (r-mTBI) sustained in the military or contact sports have been associated with the accumulation of extracellular tau in the brain, which may contribute to the pathogenesis of neurodegenerative tauopathies. The expression of the apolipoprotein E4 (apoE4) isoform has been associated with higher levels of tau in the brain, and worse clinical outcomes after r-mTBI, though the influence of apoE genotype on extracellular tau dynamics in the brain is poorly understood. We recently demonstrated that extracellular tau can be eliminated across blood-brain barrier (BBB), which is progressively impaired following r-mTBI. The current studies investigated the influence of repetitive mild TBI (r-mTBI) and apoE genotype on the elimination of extracellular solutes from the brain. Following intracortical injection of biotin-labeled tau into humanized apoE-Tr mice, the levels of exogenous tau residing in the brain of apoE4 mice were elevated compared to other isoforms, indicating reduced tau elimination. Additionally, we found exposure to r-mTBI increased tau residence in apoE2 mice, similar to our observations in E2FAD animals. Each of these findings may be the result of diminished tau efflux via LRP1 at the BBB, as LRP1 inhibition significantly reduced tau uptake in endothelial cells and decreased tau transit across an in vitro model of the BBB (basolateral-to-apical). Notably, we showed that injury and apoE status, (particularly apoE4) resulted in chronic alterations in BBB integrity, pericyte coverage, and AQP4 polarization. These aberrations coincided with an atypical reactive astrocytic gene signature indicative of diminished CSF-ISF exchange. Our work found that CSF movement was reduced in the chronic phase following r-mTBI (>18 months post injury) across all apoE genotypes. In summary, we show that apoE genotype strongly influences cerebrovascular homeostasis, which can lead to age-dependent deficiencies in the elimination of toxic proteins from the brain, like tau, particularly in the aftermath of head trauma.


Asunto(s)
Apolipoproteína E4 , Conmoción Encefálica , Ratones , Animales , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Ratones Transgénicos , Células Endoteliales/metabolismo , Encéfalo/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Conmoción Encefálica/metabolismo
6.
Nat Commun ; 15(1): 3522, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664386

RESUMEN

Despite decades of research, the influence of climate on the export of dissolved organic carbon (DOC) from soil remains poorly constrained, adding uncertainty to global carbon models. The limited temporal range of contemporary monitoring data, ongoing climate reorganisation and confounding anthropogenic activities muddy the waters further. Here, we reconstruct DOC leaching over the last ~14,000 years using alpine environmental archives (two speleothems and one lake sediment core) across 4° of latitude from Te Waipounamu/South Island of Aotearoa New Zealand. We selected broadly comparable palaeoenvironmental archives in mountainous catchments, free of anthropogenically-induced landscape changes prior to ~1200 C.E. We show that warmer temperatures resulted in increased allochthonous DOC export through the Holocene, most notably during the Holocene Climatic Optimum (HCO), which was some 1.5-2.5 °C warmer than the late pre-industrial period-then decreased during the cooler mid-Holocene. We propose that temperature exerted the key control on the observed doubling to tripling of soil DOC export during the HCO, presumably via temperature-mediated changes in vegetative soil C inputs and microbial degradation rates. Future warming may accelerate DOC export from mountainous catchments, with implications for the global carbon cycle and water quality.

7.
J Clin Oncol ; 42(21): 2516-2526, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38743911

RESUMEN

PURPOSE: The aim of the Innovative Therapies for Children with Cancer (ITCC) consortium is to improve access to novel therapies for children and adolescents with cancer. The evolution of the ITCC clinical trial portfolio since 2003 was reviewed. METHODS: All ITCC-labeled phase I/II trials opened between January 1, 2003 and February 3, 2018 were analyzed in two periods (2003-2010 and 2011-2018), and data were extracted from the ITCC database, regulatory agencies' registries, and publications. RESULTS: Sixty-one trials (62% industry-sponsored) enrolled 3,198 patients. The number of trials in the second period increased by almost 300% (16 v 45). All biomarker-driven trials (n = 14) were conducted in the second period. The use of rolling six and model-based designs increased (1 of 9, 11% v 21 of 31, 68%), and that of 3 + 3 designs decreased (5 of 9, 55% v 5 of 31, 16%; P = .014). The proportion of studies evaluating chemotherapeutics only decreased (5 of 16, 31% v 4 of 45, 9%), the proportion of single-agent targeted therapies did not change (9 of 16, 56.2% v 24 of 45, 53.3%), the proportion of combination targeted therapies trials increased (2 of 16, 12%, v 17 of 45, 38%), the proportion of randomized phase II trials increased (1 of 7, 14% v 8 of 14, 57%). More trials were part of a pediatric investigation plan in the second period (4 of 16, 25% v 21 of 45, 46%). The median time for Ethics Committees' approvals was 1.7 times longer for academic compared with industry-sponsored trials. CONCLUSION: This study reports a shift in the paradigm of early drug development for childhood cancers, with more biologically relevant targets evaluated in biomarker-driven trials or in combination with other therapies and with more model-based or randomized designs and a greater focus on fulfilling regulatory requirements. Improvement of trial setup and recruitment could increase the number of patients benefiting from novel agents.


Asunto(s)
Desarrollo de Medicamentos , Neoplasias , Humanos , Niño , Neoplasias/tratamiento farmacológico , Adolescente , Ensayos Clínicos Fase II como Asunto , Antineoplásicos/uso terapéutico , Ensayos Clínicos Fase I como Asunto , Terapias en Investigación , Proyectos de Investigación
8.
Eur J Cancer ; 207: 114145, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936103

RESUMEN

Phosphatidylinositol 3-kinase (PI3-K) signalling pathway is a crucial path in cancer for cell survival and thus represents an intriguing target for new paediatric anti-cancer drugs. However, the unique clinical toxicities of targeting this pathway (resulting in hyperglycaemia) difficulties combining with chemotherapy, rarity of mutations in childhood tumours and concomitant mutations have resulted in major barriers to clinical translation of these inhibitors in treating both adults and children. Mutations in PIK3CA predict response to PI3-K inhibitors in adult cancers. The same mutations occur in children as in adults, but they are significantly less frequent in paediatrics. In children, high-grade gliomas, especially diffuse midline gliomas (DMG), have the highest incidence of PIK3CA mutations. New mutation-specific PI3-K inhibitors reduce toxicity from on-target PI3-Kα wild-type activity. The mTOR inhibitor everolimus is approved for subependymal giant cell astrocytomas. In paediatric cancers, mTOR inhibitors have been predominantly evaluated by academia, without an overall strategy, in empiric, mutation-agnostic clinical trials with very low response rates to monotherapy. Therefore, future trials of single agent or combination strategies of mTOR inhibitors in childhood cancer should be supported by very strong biological rationale and preclinical data. Further preclinical evaluation of glycogen synthase kinase-3 beta inhibitors is required. Similarly, even where there is an AKT mutation (∼0.1 %), the role of AKT inhibitors in paediatric cancers remains unclear. Patient advocates strongly urged analysing and conserving data from every child participating in a clinical trial. A priority is to evaluate mutation-specific, central nervous system-penetrant PI3-K inhibitors in children with DMG in a rational biological combination. The choice of combination, should be based on the genomic landscape e.g. PTEN loss and resistance mechanisms supported by preclinical data. However, in view of the very rare populations involved, innovative regulatory approaches are needed to generate data for an indication.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Neoplasias , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Humanos , Niño , Adolescente , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores mTOR/uso terapéutico , Inhibidores mTOR/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Transducción de Señal/efectos de los fármacos
9.
J Clin Oncol ; 42(10): 1135-1145, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38190578

RESUMEN

PURPOSE: Outcomes for children with relapsed and refractory high-risk neuroblastoma (RR-HRNB) remain dismal. The BEACON Neuroblastoma trial (EudraCT 2012-000072-42) evaluated three backbone chemotherapy regimens and the addition of the antiangiogenic agent bevacizumab (B). MATERIALS AND METHODS: Patients age 1-21 years with RR-HRNB with adequate organ function and performance status were randomly assigned in a 3 × 2 factorial design to temozolomide (T), irinotecan-temozolomide (IT), or topotecan-temozolomide (TTo) with or without B. The primary end point was best overall response (complete or partial) rate (ORR) during the first six courses, by RECIST or International Neuroblastoma Response Criteria for patients with measurable or evaluable disease, respectively. Safety, progression-free survival (PFS), and overall survival (OS) time were secondary end points. RESULTS: One hundred sixty patients with RR-HRNB were included. For B random assignment (n = 160), the ORR was 26% (95% CI, 17 to 37) with B and 18% (95% CI, 10 to 28) without B (risk ratio [RR], 1.52 [95% CI, 0.83 to 2.77]; P = .17). Adjusted hazard ratio for PFS and OS were 0.89 (95% CI, 0.63 to 1.27) and 1.01 (95% CI, 0.70 to 1.45), respectively. For irinotecan ([I]; n = 121) and topotecan (n = 60) random assignments, RRs for ORR were 0.94 and 1.22, respectively. A potential interaction between I and B was identified. For patients in the bevacizumab-irinotecan-temozolomide (BIT) arm, the ORR was 23% (95% CI, 10 to 42), and the 1-year PFS estimate was 0.67 (95% CI, 0.47 to 0.80). CONCLUSION: The addition of B met protocol-defined success criteria for ORR and appeared to improve PFS. Within this phase II trial, BIT showed signals of antitumor activity with acceptable tolerability. Future trials will confirm these results in the chemoimmunotherapy era.


Asunto(s)
Neuroblastoma , Topotecan , Niño , Humanos , Lactante , Preescolar , Adolescente , Adulto Joven , Adulto , Temozolomida/uso terapéutico , Irinotecán/uso terapéutico , Topotecan/efectos adversos , Bevacizumab/efectos adversos , Dacarbazina/efectos adversos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Neuroblastoma/patología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA