RESUMEN
Wound healing pathologies are an increasing problem in ageing societies. Chronic, non-healing wounds, which cause high morbidity and severely reduce the quality of life of affected individuals, are frequently observed in aged individuals and people suffering from diseases affected by the Western lifestyle, such as diabetes. Causal treatments that support proper wound healing are still scarce. Here, we performed expression proteomics to study the effects of the small molecule TOP-N53 on primary human skin fibroblasts and keratinocytes. TOP-N53 is a dual-acting nitric oxide donor and phosphodiesterase-5 inhibitor increasing cGMP levels to support proper wound healing. In contrast to keratinocytes, which did not exhibit global proteome alterations, TOP-N53 had profound effects on the proteome of skin fibroblasts. In fibroblasts, TOP-N53 activated the cytoprotective, lysosomal degradation pathway autophagy and induced the expression of the selective autophagy receptor p62/SQSTM1. Thus, activation of autophagy might in part be responsible for beneficial effects of TOP-N53.
Asunto(s)
Donantes de Óxido Nítrico , Inhibidores de Fosfodiesterasa 5 , Anciano , Autofagia , Fibroblastos/metabolismo , Humanos , Queratinocitos/metabolismo , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Inhibidores de Fosfodiesterasa 5/farmacología , Proteoma/metabolismo , Calidad de Vida , Piel/metabolismoRESUMEN
As a central element within the RAS/ERK pathway, the serine/threonine kinase BRAF plays a key role in development and homeostasis and represents the most frequently mutated kinase in tumors. Consequently, it has emerged as an important therapeutic target in various malignancies. Nevertheless, the BRAF activation cycle still raises many mechanistic questions as illustrated by the paradoxical action and side effects of RAF inhibitors. By applying SEC-PCP-SILAC, we analyzed protein-protein interactions of hyperactive BRAFV600E and wild-type BRAF (BRAFWT). We identified two macromolecular, cytosolic BRAF complexes of distinct molecular composition and phosphorylation status. Hyperactive BRAFV600E resides in large complexes of higher molecular mass and activity, while BRAFWT is confined to smaller, slightly less active complexes. However, expression of oncogenic K-RasG12V, either by itself or in combination with RAF dimer promoting inhibitors, induces the incorporation of BRAFWT into large, active complexes, whereas pharmacological inhibition of BRAFV600E has the opposite effect. Thus, the quaternary structure of BRAF complexes is shaped by its activation status, the conformation of its kinase domain, and clinically relevant inhibitors.
Asunto(s)
Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/metabolismo , Animales , Células Cultivadas , Cromatografía en Gel , Humanos , Espectrometría de Masas , Ratones , Fosforilación , Conformación ProteicaRESUMEN
Seasonal epidemics of influenza A virus are a major cause of severe illness and are of high socio-economic relevance. For the design of effective antiviral therapies, a detailed knowledge of pathways perturbed by virus infection is critical. We performed comprehensive expression and organellar proteomics experiments to study the cellular consequences of influenza A virus infection using three human epithelial cell lines derived from human lung carcinomas: A549, Calu-1 and NCI-H1299. As a common response, the type I interferon pathway was up-regulated upon infection. Interestingly, influenza A virus infection led to numerous cell line-specific responses affecting both protein abundance as well as subcellular localization. In A549 cells, the vesicular compartment appeared expanded after virus infection. The composition of autophagsomes was altered by targeting of ribosomes, viral mRNA and proteins to these double membrane vesicles. Thus, autophagy may support viral protein translation by promoting the clustering of the respective molecular machinery in autophagosomes in a cell line-dependent manner.
Asunto(s)
Autofagosomas/metabolismo , Virus de la Influenza A/metabolismo , Proteínas Ribosómicas/metabolismo , Autofagia , Línea Celular Tumoral , Humanos , Gripe Humana/metabolismo , Gripe Humana/patología , Gripe Humana/virología , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Ribosomas/metabolismoRESUMEN
Morphogenesis represents a phase of development during which cell fates are executed. The conserved hox genes are key cell fate determinants during metazoan development, but their role in controlling organ morphogenesis is less understood. Here, we show that the C. elegans hox gene lin-39 regulates epidermal morphogenesis via its novel target, the essential zinc finger protein VAB-23. During the development of the vulva, the egg-laying organ of the hermaphrodite, the EGFR/RAS/MAPK signaling pathway activates, together with LIN-39 HOX, the expression of VAB-23 in the primary cell lineage to control the formation of the seven vulval toroids. VAB-23 regulates the formation of homotypic contacts between contralateral pairs of cells with the same sub-fates at the vulval midline by inducing smp-1 (semaphorin) transcription. In addition, VAB-23 prevents ectopic vulval cell fusions by negatively regulating expression of the fusogen eff-1. Thus, LIN-39 and the EGFR/RAS/MAPK signaling pathway, which specify cell fates earlier during vulval induction, continue to act during the subsequent phase of cell fate execution by regulating various aspects of epidermal morphogenesis. Vulval cell fate specification and execution are, therefore, tightly coupled processes.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/embriología , Proteínas Portadoras/metabolismo , Receptores ErbB/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Morfogénesis/fisiología , Transducción de Señal/fisiología , Animales , Secuencia de Bases , Biomarcadores/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Fusión Celular , Linaje de la Célula , Receptores ErbB/genética , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas de Homeodominio/genética , Péptidos y Proteínas de Señalización Intracelular , Proteínas Quinasas Activadas por Mitógenos/genética , Datos de Secuencia Molecular , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Alineación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dedos de ZincRESUMEN
Autophagy initiation is regulated by the ULK1 kinase complex. To gain insights into functions of the holo-complex, we generated a deep interactome by combining affinity purification- and proximity labeling-mass spectrometry of all four complex members: ULK1, ATG13, ATG101, and RB1CC1/FIP200. Under starvation conditions, the ULK1 complex interacts with several protein and lipid kinases and phosphatases, implying the formation of a signalosome. Interestingly, several selective autophagy receptors also interact with ULK1, indicating the activation of selective autophagy pathways by nutrient starvation. One effector of the ULK1 complex is the HSC/HSP70 co-chaperone BAG2, which regulates the subcellular localization of the VPS34 lipid kinase complex member AMBRA1. Depending on the nutritional status, BAG2 has opposing roles. In growth conditions, the unphosphorylated form of BAG2 sequesters AMBRA1, attenuating autophagy induction. In starvation conditions, ULK1 phosphorylates BAG2 on Ser31, which supports the recruitment of AMBRA1 to the ER membrane, positively affecting autophagy.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Homólogo de la Proteína 1 Relacionada con la Autofagia , Autofagia , Péptidos y Proteínas de Señalización Intracelular , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células HEK293 , Fosforilación , Proteínas Relacionadas con la Autofagia/metabolismo , Unión Proteica , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Células HeLa , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Chaperonas MolecularesRESUMEN
DNA vectors that express short hairpin RNAs (shRNAs) from RNA polymerase III (Pol III) promoters are a promising new tool to reduce gene expression in mammalian cells. shRNAs are processed to small interfering RNAs (siRNAs) of 21 nucleotides (nt) that guide the cleavage of the cognate mRNA by the RNA-induced silencing complex. Although siRNAs are thought to be too short to induce interferon expression, we report here that a substantial number of shRNA vectors can trigger an interferon response.
Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , Vectores Genéticos , Interferones/metabolismo , Lentivirus/genética , ARN Interferente Pequeño/metabolismo , ARN/química , ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Inducción Enzimática , Fibroblastos/metabolismo , Células HeLa , Humanos , Pulmón/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa III/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Transcripción Genética , TransfecciónRESUMEN
The inflammatory repressor TNIP1/ABIN-1 is important for keeping in check inflammatory and cell-death pathways to avoid potentially dangerous sustained activation of these pathways. We have now found that TNIP1 is rapidly degraded by selective macroautophagy/autophagy early (0-4 h) after activation of TLR3 by poly(I:C)-treatment to allow expression of pro-inflammatory genes and proteins. A few hours later (6 h), TNIP1 levels rise again to counteract sustained inflammatory signaling. TBK1-mediated phosphorylation of a TNIP1 LIR motif regulates selective autophagy of TNIP1 by stimulating interaction with Atg8-family proteins. This is a novel level of regulation of TNIP1, whose protein level is crucial for controlling inflammatory signaling.
Asunto(s)
Autofagia , Proteínas de Unión al ADN , Proteínas Asociadas a Microtúbulos , Humanos , Secuencias de Aminoácidos , Autofagia/fisiología , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismoRESUMEN
Limitation of excessive inflammation due to selective degradation of pro-inflammatory proteins is one of the cytoprotective functions attributed to autophagy. In the current study, we highlight that selective autophagy also plays a vital role in promoting the establishment of a robust inflammatory response. Under inflammatory conditions, here TLR3-activation by poly(I:C) treatment, the inflammation repressor TNIP1 (TNFAIP3 interacting protein 1) is phosphorylated by Tank-binding kinase 1 (TBK1) activating an LIR motif that leads to the selective autophagy-dependent degradation of TNIP1, supporting the expression of pro-inflammatory genes and proteins. This selective autophagy efficiently reduces TNIP1 protein levels early (0-4 h) upon poly(I:C) treatment to allow efficient initiation of the inflammatory response. At 6 h, TNIP1 levels are restored due to increased transcription avoiding sustained inflammation. Thus, similarly as in cancer, autophagy may play a dual role in controlling inflammation depending on the exact state and timing of the inflammatory response.
Asunto(s)
Autofagia , Proteínas de Unión al ADN , Inflamación , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas de Unión al ADN/metabolismo , Células HeLa , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismoRESUMEN
The Smc5/6 holocomplex executes key functions in genome maintenance that include ensuring the faithful segregation of chromosomes at mitosis and facilitating critical DNA repair pathways. Smc5/6 is essential for viability and therefore, dissecting its chromosome segregation and DNA repair roles has been challenging. We have identified distinct epigenetic and post-translational modifications that delineate roles for fission yeast Smc5/6 in centromere function, versus replication fork-associated DNA repair. We monitored Smc5/6 subnuclear and genomic localization in response to different replicative stresses, using fluorescence microscopy and chromatin immunoprecipitation (ChIP)-on-chip methods. Following hydroxyurea treatment, and during an unperturbed S phase, Smc5/6 is transiently enriched at the heterochromatic outer repeats of centromeres in an H3-K9 methylation-dependent manner. In contrast, methyl methanesulphonate treatment induces the accumulation of Smc5/6 at subtelomeres, in an Nse2 SUMO ligase-dependent, but H3-K9 methylation-independent manner. Finally, we determine that Smc5/6 loads at all genomic tDNAs, a phenomenon that requires intact consensus TFIIIC-binding sites in the tDNAs.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Telómero/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Proteínas Cromosómicas no Histona/genética , Replicación del ADN , ADN de Hongos/química , ADN de Hongos/metabolismo , Hidroxiurea/metabolismo , Metilmetanosulfonato/metabolismo , Mutágenos/metabolismo , Inhibidores de la Síntesis del Ácido Nucleico/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genéticaRESUMEN
The protein kinase mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and proliferation, supporting anabolic reactions and inhibiting catabolic pathways like autophagy. Its hyperactivation is a frequent event in cancer promoting tumor cell proliferation. Several intracellular membrane-associated mTORC1 pools have been identified, linking its function to distinct subcellular localizations. Here, we characterize the N-terminal kinase-like protein SCYL1 as a Golgi-localized target through which mTORC1 controls organelle distribution and extracellular vesicle secretion in breast cancer cells. Under growth conditions, SCYL1 is phosphorylated by mTORC1 on Ser754, supporting Golgi localization. Upon mTORC1 inhibition, Ser754 dephosphorylation leads to SCYL1 displacement to endosomes. Peripheral, dephosphorylated SCYL1 causes Golgi enlargement, redistribution of early and late endosomes and increased extracellular vesicle release. Thus, the mTORC1-controlled phosphorylation status of SCYL1 is an important determinant regulating subcellular distribution and function of endolysosomal compartments. It may also explain the pathophysiology underlying human genetic diseases such as CALFAN syndrome, which is caused by loss-of-function of SCYL1.
Asunto(s)
Aparato de Golgi , Lisosomas , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas de Unión al ADN/metabolismo , Aparato de Golgi/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , FosforilaciónRESUMEN
Stabilization and processing of stalled replication forks is critical for cell survival and genomic integrity. We characterize a novel DNA repair heterodimer of Nse5 and Nse6, which are nonessential nuclear proteins critical for chromosome segregation in fission yeast. The Nse5/6 dimer facilitates DNA repair as part of the Smc5-Smc6 holocomplex (Smc5/6), the basic architecture of which we define. Nse5-Nse6 [corrected] (Nse5 and Nse6) [corrected] mutants display a high level of spontaneous DNA damage and mitotic catastrophe in the absence of the master checkpoint regulator Rad3 (hATR). Nse5/6 mutants are required for the response to genotoxic agents that block the progression of replication forks, acting in a pathway that allows the tolerance of irreparable UV lesions. Interestingly, the UV sensitivity of Nse5/6 [corrected] is suppressed by concomitant deletion of the homologous recombination repair factor, Rhp51 (Rad51). Further, the viability of Nse5/6 mutants depends on Mus81 and Rqh1, factors that resolve or prevent the formation of Holliday junctions. Consistently, the UV sensitivity of cells lacking Nse5/6 can be partially suppressed by overexpressing the bacterial resolvase RusA. We propose a role for Nse5/6 mutants in suppressing recombination that results in Holliday junction formation or in Holliday junction resolution.
Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimerización , Endonucleasas/genética , Endonucleasas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma Fúngico/genética , Inestabilidad Genómica , Resolvasas de Unión Holliday/genética , Resolvasas de Unión Holliday/metabolismo , Complejos Multiproteicos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinación Genética , Schizosaccharomyces/genética , Schizosaccharomyces/efectos de la radiación , Proteínas de Schizosaccharomyces pombe/genética , Rayos UltravioletaRESUMEN
Mass spectrometry (MS)-based identification and characterization of protein complexes is becoming a prerequisite for in-depth biochemical analyses of intracellular processes. Here, we describe two state-of-the-art MS-based approaches to characterize protein-protein interactions and multi-protein complexes involved in autophagy in mammalian cells. The combination of affinity purification (AP)-MS, which identifies binary protein-protein interactions, with size-exclusion chromatography (SEC)-protein correlation profiling (PCP), which helps monitor protein complex assemblies, is a powerful tool to acquire a full overview of the interlinkage and regulation of novel multi-protein complexes that might play a role in autophagy.
Asunto(s)
Autofagia/fisiología , Complejos Multiproteicos/metabolismo , Mapeo de Interacción de Proteínas/métodos , Espectrometría de Masas en Tándem/métodos , Autofagia/efectos de los fármacos , Cromatografía de Afinidad/instrumentación , Cromatografía de Afinidad/métodos , Cromatografía en Gel/instrumentación , Cromatografía en Gel/métodos , Humanos , Células MCF-7 , Macrólidos/farmacología , Mapeo de Interacción de Proteínas/instrumentación , Multimerización de Proteína/fisiología , Espectrometría de Masas en Tándem/instrumentaciónRESUMEN
The structural maintenance of chromosomes (SMC) family of proteins play key roles in the organization, packaging, and repair of chromosomes. Cohesin (Smc1+3) holds replicated sister chromatids together until mitosis, condensin (Smc2+4) acts in chromosome condensation, and Smc5+6 performs currently enigmatic roles in DNA repair and chromatin structure. The SMC heterodimers must associate with non-SMC subunits to perform their functions. Using both biochemical and genetic methods, we have isolated a novel subunit of the Smc5+6 complex, Nse3. Nse3 is an essential nuclear protein that is required for normal mitotic chromosome segregation and cellular resistance to a number of genotoxic agents. Epistasis with Rhp51 (Rad51) suggests that like Smc5+6, Nse3 functions in the homologous recombination based repair of DNA damage. We previously identified two non-SMC subunits of Smc5+6 called Nse1 and Nse2. Analysis of nse1-1, nse2-1, and nse3-1 mutants demonstrates that they are crucial for meiosis. The Nse1 mutant displays meiotic DNA segregation and homologous recombination defects. Spore viability is reduced by nse2-1 and nse3-1, without affecting interhomolog recombination. Finally, genetic interactions shared by the nse mutants suggest that the Smc5+6 complex is important for replication fork stability.
Asunto(s)
Meiosis , Proteínas Nucleares/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/fisiología , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Supervivencia Celular , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/ultraestructura , Reparación del ADN , Rayos gamma , Eliminación de Gen , Immunoblotting , Inmunoprecipitación , Mitosis , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Péptidos/química , Unión Proteica , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos , Rayos UltravioletaRESUMEN
The Green Fluorescent Protein (GFP) has been tremendously useful in investigating cell architecture, protein localization, and protein function. Recent developments in transgenesis and genome editing methods now enable working with fewer transgene copies and, consequently, with physiological expression levels. However, lower signal intensity might become a limiting factor. The recently developed mNeonGreen protein is a brighter alternative to GFP in vitro The goal of the present study was to determine how mNeonGreen performs in vivo in Caenorhabditis elegans-a model used extensively for fluorescence imaging in intact animals. We started with a side-by-side comparison between cytoplasmic forms of mNeonGreen and GFP expressed in the intestine, and in different neurons, of adult animals. While both proteins had similar photostability, mNeonGreen was systematically 3-5 times brighter than GFP. mNeonGreen was also used successfully to trace endogenous proteins, and label specific subcellular compartments such as the nucleus or the plasma membrane. To further demonstrate the utility of mNeonGreen, we tested transcriptional reporters for nine genes with unknown expression patterns. While mNeonGreen and GFP reporters gave overall similar expression patterns, low expression tissues were detected only with mNeonGreen. As a whole, our work establishes mNeonGreen as a brighter alternative to GFP for in vivo imaging in a multicellular organism. Furthermore, the present research illustrates the utility of mNeonGreen to tag proteins, mark subcellular regions, and describe new expression patterns, particularly in tissues with low expression.
Asunto(s)
Rastreo Celular/métodos , Proteínas Fluorescentes Verdes/farmacología , Proteínas Luminiscentes/farmacología , Imagen Óptica/métodos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas Fluorescentes Verdes/química , Intestinos/citología , Proteínas Luminiscentes/química , Microscopía Fluorescente , Neuronas/citología , Transgenes/genéticaRESUMEN
The anthraquinone emodin has been shown to have antineoplastic properties and a wealth of unconnected effects have been linked to its use, most of which are likely secondary outcomes of the drug treatment. The primary activity of emodin on cells has remained unknown. In the present study we demonstrate dramatic and extensive effects of emodin on the redox state of cells and on mitochondrial homeostasis, irrespectively of the cell type and organism, ranging from the yeast Saccharomyces cerevisiae to human cell lines and primary cells. Emodin binds to redox-active enzymes and its effectiveness depends on the oxidative and respiratory status of cells. We show that cells with efficient respiratory metabolism are less susceptible to emodin, whereas cells under glycolytic metabolism are more vulnerable to the compound. Our findings indicate that emodin acts in a similar way as known uncouplers of the mitochondrial electron transport chain and causes oxidative stress that particularly disturbs cancer cells.
Asunto(s)
Proliferación Celular/efectos de los fármacos , Emodina/farmacología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células A549 , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HeLa , Humanos , Células MCF-7 , Neoplasias/metabolismo , Neoplasias/patología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Proteómica/métodos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismoRESUMEN
BACKGROUND: The nucleosome remodeling and deacetylase complex promotes cell fate decisions throughout embryonic development. Its core enzymatic subunit, the SNF2-like ATPase and Helicase Mi2, is well conserved throughout the eukaryotic kingdom and can be found in multiple and highly homologous copies in all vertebrates and some invertebrates. However, the reasons for such duplications and their implications for embryonic development are unknown. RESULTS: Here we studied the two C. elegans Mi2 homologues, LET-418 and CHD-3, which displayed redundant activities during early embryonic development. At the transcriptional level, these two Mi2 homologues redundantly repressed the expression of a large gene population. We found that LET-418 physically accumulated at TSS-proximal regions on transcriptionally active genomic targets involved in growth and development. Moreover, LET-418 acted redundantly with CHD-3 to block H3K4me3 deposition at these genes. Our study also revealed that LET-418 was partially responsible for recruiting Polycomb to chromatin and for promoting H3K27me3 deposition. Surprisingly, CHD-3 displayed opposite activities on Polycomb, as it was capable of moderating its LET-418-dependent recruitment and restricted the amount of H3K27me3 on the studied target genes. CONCLUSION: Although closely homologous, LET-418 and CHD-3 showed both redundant and opposite functions in modulating the chromatin environment at developmental target genes. We identified the interplay between LET-418 and CHD-3 to finely tune the levels of histone marks at developmental target genes. More than just repressors, Mi2-containing complexes appear as subtle modulators of gene expression throughout development. The study of such molecular variations in vertebrate Mi2 counterparts might provide crucial insights to our understanding of the epigenetic control of early development.
RESUMEN
Stable gene silencing by RNA interference (RNAi) can be achieved by expression of small hairpin RNAs (shRNAs) from RNA polymerase III promoters. We have tested lentiviral vectors expressing shRNAs targetting CCR5 in primary CD4 T cells from donors representing various CCR5 and CCR2 genetic backgrounds covering the full spectrum of CCR5 expression levels and permissiveness for HIV-1 infection. A linear decrease in CCR5 expression resulted in a logarithmic decrease in cellular infection, giving up to three logs protection from HIV-1 infection in vitro. Protection was maintained at very high multiplicity of infection. This and other recent reports on RNAi should open a debate about the use of RNAi gene therapy for HIV infection.
Asunto(s)
Linfocitos T CD4-Positivos/virología , Silenciador del Gen , Infecciones por VIH/prevención & control , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores CCR5/genética , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Terapia Genética , Vectores Genéticos , VIH-1/inmunología , Humanos , Lentivirus/genética , Lentivirus/metabolismo , ARN Interferente Pequeño/genética , Receptores CCR5/metabolismoRESUMEN
Throughout their journey to forming new individuals, germline stem cells must remain totipotent, particularly by maintaining a specific chromatin structure. However, the place epigenetic factors occupy in this process remains elusive. So far, "sensitization" of chromatin by modulation of histone arrangement and/or content was believed to facilitate transcription-factor-induced germ cell reprogramming. Here, we demonstrate that the combined reduction of two epigenetic factors suffices to reprogram C. elegans germ cells. The histone H3K4 demethylase SPR-5/LSD1 and the chromatin remodeler LET-418/Mi2 function together in an early process to maintain germ cell status and act as a barrier to block precocious differentiation. This epigenetic barrier is capable of limiting COMPASS-mediated H3K4 methylation, because elevated H3K4me3 levels correlate with germ cell reprogramming in spr-5; let-418 mutants. Interestingly, germ cells deficient for spr-5 and let-418 mainly reprogram as neurons, suggesting that neuronal fate might be the first to be derepressed in early embryogenesis.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Reprogramación Celular , Proteínas de Unión al ADN/metabolismo , Células Germinativas/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Células Madre/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular/genética , División Celular/genética , Transformación Celular Neoplásica/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Femenino , Regulación de la Expresión Génica , Células Germinativas/citología , Histonas/metabolismo , Masculino , Metilación , Mutación , Neoplasias de Células Germinales y Embrionarias/genética , Neuronas/citología , Neuronas/metabolismo , Oxidorreductasas N-Desmetilantes/genética , Unión Proteica , Células Madre/citologíaRESUMEN
Biochemical purifications from mammalian cells and Xenopus oocytes revealed that vertebrate Mi-2 proteins reside in multisubunit NuRD (Nucleosome Remodeling and Deacetylase) complexes. Since all NuRD subunits are highly conserved in the genomes of C. elegans and Drosophila, it was suggested that NuRD complexes also exist in invertebrates. Recently, a novel dMec complex, composed of dMi-2 and dMEP-1 was identified in Drosophila. The genome of C. elegans encodes two highly homologous Mi-2 orthologues, LET-418 and CHD-3. Here we demonstrate that these proteins define at least three different protein complexes, two distinct NuRD complexes and one MEC complex. The two canonical NuRD complexes share the same core subunits HDA-1/HDAC, LIN-53/RbAp and LIN-40/MTA, but differ in their Mi-2 orthologues LET-418 or CHD-3. LET-418 but not CHD-3, interacts with the Krüppel-like protein MEP-1 in a distinct complex, the MEC complex. Based on microarrays analyses, we propose that MEC constitutes an important LET-418 containing regulatory complex during C. elegans embryonic and early larval development. It is required for the repression of germline potential in somatic cells and acts when blastomeres are still dividing and differentiating. The two NuRD complexes may not be important for the early development, but may act later during postembryonic development. Altogether, our data suggest a considerable complexity in the composition, the developmental function and the tissue-specificity of the different C. elegans Mi-2 complexes.
Asunto(s)
Adenosina Trifosfatasas/fisiología , Autoantígenos/fisiología , Caenorhabditis elegans/embriología , Proteínas de Drosophila/fisiología , Animales , Caenorhabditis elegans/genética , Células Germinativas , Proteínas Fluorescentes Verdes/genéticaRESUMEN
The Smc5-Smc6 holocomplex plays essential but largely enigmatic roles in chromosome segregation, and facilitates DNA repair. The Smc5-Smc6 complex contains six conserved non-SMC subunits. One of these, Nse1, contains a RING-like motif that often confers ubiquitin E3 ligase activity. We have functionally characterized the Nse1 RING-like motif, to determine its contribution to the chromosome segregation and DNA repair roles of Smc5-Smc6. Strikingly, whereas a full deletion of nse1 is lethal, the Nse1 RING-like motif is not essential for cellular viability. However, Nse1 RING mutant cells are hypersensitive to a broad spectrum of genotoxic stresses, indicating that the Nse1 RING motif promotes DNA repair functions of Smc5-Smc6. We tested the ability of both human and yeast Nse1 to mediate ubiquitin E3 ligase activity in vitro and found no detectable activity associated with full-length Nse1 or the isolated RING domains. Interestingly, however, the Nse1 RING-like domain is required for normal Nse1-Nse3-Nse4 trimer formation in vitro and for damage-induced recruitment of Nse4 and Smc5 to subnuclear foci in vivo. Thus, we propose that the Nse1 RING-like motif is a protein-protein interaction domain required for Smc5-Smc6 holocomplex integrity and recruitment to, or retention at, DNA lesions.