Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Exp Biol ; 225(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35262171

RESUMEN

Echolocating bats listen for weak echoes to navigate and hunt, which makes them prone to masking from background noise and jamming from other bats and prey. As for electrical fish that display clear spectral jamming avoidance responses (JAR), bats have been reported to mitigate the effects of jamming by shifting the spectral contents of their calls, thereby reducing acoustic interference to improve echo-to-noise ratio (ENR). Here, we tested the hypothesis that frequency-modulating bats (FM bats) employ a spectral JAR in response to six masking noise bands ranging from 15 to 90 kHz, by measuring the -3 dB endpoints and peak frequency of echolocation calls from five male Daubenton's bats (Myotis daubentonii) during a landing task. The bats were trained to land on a noise-generating spherical transducer surrounded by a star-shaped microphone array, allowing for acoustic localization and source parameter quantification of on-axis calls. We show that the bats did not employ spectral JAR as the peak frequency during jamming remained unaltered compared with that of silent controls (all P>0.05, 60.73±0.96 kHz, mean±s.e.m.), and -3 dB endpoints decreased in noise irrespective of treatment type. Instead, Daubenton's bats responded to acoustic jamming by increasing call amplitude via a Lombard response that was bandwidth dependent, ranging from a mean of 0.05 dB/dB (95% confidence interval 0.04-0.06 dB/dB) noise for the most narrowband noise (15-30 kHz) to 0.17 dB/dB (0.16-0.18 dB/dB) noise for the most broadband noise (30-90 kHz). We conclude that Daubenton's bats, despite having the vocal flexibility to do so, do not employ a spectral JAR, but defend ENRs via a bandwidth-dependent Lombard response.


Asunto(s)
Quirópteros , Ecolocación , Acústica , Animales , Quirópteros/fisiología , Ecolocación/fisiología , Alimentos , Masculino , Ruido
3.
BMC Zool ; 9(1): 9, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679717

RESUMEN

Most bats hunt insects on the wing at night using echolocation as their primary sensory modality, but nevertheless maintain complex eye anatomy and functional vision. This raises the question of how and when insectivorous bats use vision during their largely nocturnal lifestyle. Here, we test the hypothesis that the small insectivorous bat, Myotis daubentonii, relies less on echolocation, or dispenses with it entirely, as visual cues become available during challenging acoustic noise conditions. We trained five wild-caught bats to land on a spherical target in both silence and when exposed to broad-band noise to decrease echo detectability, while light conditions were manipulated in both spectrum and intensity. We show that during noise exposure, the bats were almost three times more likely to use multiple attempts to solve the task compared to in silent controls. Furthermore, the bats exhibited a Lombard response of 0.18 dB/dBnoise and decreased call intervals earlier in their flight during masking noise exposures compared to in silent controls. Importantly, however, these adjustments in movement and echolocation behaviour did not differ between light and dark control treatments showing that small insectivorous bats maintain the same echolocation behaviour when provided with visual cues under challenging conditions for echolocation. We therefore conclude that bat echolocation is a hard-wired sensory system with stereotyped compensation strategies to both target range and masking noise (i.e. Lombard response) irrespective of light conditions. In contrast, the adjustments of call intervals and movement strategies during noise exposure varied substantially between individuals indicating a degree of flexibility that likely requires higher order processing and perhaps vocal learning.

4.
Curr Biol ; 34(11): 2509-2516.e3, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38744283

RESUMEN

Acoustic cues are crucial to communication, navigation, and foraging in many animals, which hence face the problem of detecting and discriminating these cues in fluctuating noise levels from natural or anthropogenic sources. Such auditory dynamics are perhaps most extreme for echolocating bats that navigate and hunt prey on the wing in darkness by listening for weak echo returns from their powerful calls in complex, self-generated umwelts.1,2 Due to high absorption of ultrasound in air and fast flight speeds, bats operate with short prey detection ranges and dynamic sensory volumes,3 leading us to hypothesize that bats employ superfast vocal-motor adjustments to rapidly changing sensory scenes. To test this hypothesis, we investigated the onset and offset times and magnitude of the Lombard response in free-flying echolocating greater mouse-eared bats exposed to onsets of intense constant or duty-cycled masking noise during a landing task. We found that the bats invoked a bandwidth-dependent Lombard response of 0.1-0.2 dB per dB increase in noise, with very short delay and relapse times of 20 ms in response to onsets and termination of duty-cycled noise. In concert with the absence call time-locking to noise-free periods, these results show that free-flying bats exhibit a superfast, but hard-wired, vocal-motor response to increased noise levels. We posit that this reflex is mediated by simple closed-loop audio-motor feedback circuits that operate independently of wingbeat and respiration cycles to allow for rapid adjustments to the highly dynamic auditory scenes encountered by these small predators.


Asunto(s)
Quirópteros , Ecolocación , Vuelo Animal , Animales , Quirópteros/fisiología , Ecolocación/fisiología , Vuelo Animal/fisiología , Ruido , Percepción Auditiva/fisiología , Masculino , Femenino , Vocalización Animal/fisiología
5.
Sci Rep ; 11(1): 23360, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862381

RESUMEN

A longer Arctic open water season is expected to increase underwater noise levels due to anthropogenic activities such as shipping, seismic surveys, sonar, and construction. Many Arctic marine mammal species depend on sound for communication, navigation, and foraging, therefore quantifying underwater noise levels is critical for documenting change and providing input to management and legislation. Here we present long-term underwater sound recordings from 26 deployments around Greenland from 2011 to 2020. Ambient noise was analysed in third octave and decade bands and further investigated using generic detectors searching for tonal and transient sounds. Ambient noise levels partly overlap with previous Arctic observations, however we report much lower noise levels than previously documented, specifically for Melville Bay and the Greenland Sea. Consistent seasonal noise patterns occur in Melville Bay, Baffin Bay and Greenland Sea, with noise levels peaking in late summer and autumn correlating with open water periods and seismic surveys. These three regions also had similar tonal detection patterns that peaked in May/June, likely due to bearded seal vocalisations. Biological activity was more readily identified using detectors rather than band levels. We encourage additional research to quantify proportional noise contributions from geophysical, biological, and anthropogenic sources in Arctic waters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA