Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Vet Res ; 15(1): 165, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31118053

RESUMEN

BACKGROUND: Feline infectious peritonitis (FIP) is considered highly fatal in its naturally occurring form, although up to 36% of cats resist disease after experimental infection, suggesting that cats in nature may also resist development of FIP in the face of infection with FIP virus (FIPV). Previous experimental FIPV infection studies suggested a role for cell-mediated immunity in resistance to development of FIP. This experimental FIPV infection study in specific pathogen free (SPF) kittens describes longitudinal antiviral T cell responses and clinical outcomes ranging from rapid progression, slow progression, and resistance to disease. RESULTS: Differences in disease outcome provided an opportunity to investigate the role of T cell immunity to FIP determined by T cell subset proliferation after stimulation with different viral antigens. Reduced total white blood cell (WBC), lymphocyte and T cell counts in blood were observed during primary acute infection for all experimental groups including cats that survived without clinical FIP. Antiviral T cell responses during early primary infection were also similar between cats that developed FIP and cats remaining healthy. Recovery of antiviral T cell responses during the later phase of acute infection was observed in a subset of cats that survived longer or resisted disease compared to cats showing rapid disease progression. More robust T cell responses at terminal time points were observed in lymph nodes compared to blood in cats that developed FIP. Cats that survived primary infection were challenged a second time to pathogenic FIPV and tested for antiviral T cell responses over a four week period. Nine of ten rechallenged cats did not develop FIP or T cell depletion and all cats demonstrated antiviral T cell responses at multiple time points after rechallenge. CONCLUSIONS: In summary, definitive adaptive T cell responses predictive of disease outcome were not detected during the early phase of primary FIPV infection. However emergence of antiviral T cell responses after a second exposure to FIPV, implicated cellular immunity in the control of FIPV infection and disease progression. Virus host interactions during very early stages of FIPV infection warrant further investigation to elucidate host resistance to FIP.


Asunto(s)
Coronavirus Felino/inmunología , Peritonitis Infecciosa Felina/inmunología , Inmunidad Celular , Linfocitos T/inmunología , Animales , Antígenos Virales/inmunología , Gatos , Resistencia a la Enfermedad/inmunología , Organismos Libres de Patógenos Específicos
2.
PLoS Pathog ; 12(3): e1005531, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27027316

RESUMEN

Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV) causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP), can arise through mutation of FECV to FIP virus (FIPV). The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro) with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for further development for important coronaviruses in animals and humans.


Asunto(s)
Antivirales/farmacología , Enfermedades de los Gatos/tratamiento farmacológico , Infecciones por Coronavirus/tratamiento farmacológico , Coronavirus Felino/efectos de los fármacos , Peritonitis Infecciosa Felina/tratamiento farmacológico , Inhibidores de Proteasas/farmacología , Animales , Antivirales/síntesis química , Enfermedades de los Gatos/virología , Gatos , Infecciones por Coronavirus/virología , Peritonitis Infecciosa Felina/virología , Femenino , Masculino , Inhibidores de Proteasas/síntesis química , Virulencia , Replicación Viral/efectos de los fármacos
4.
Vet Res ; 49(1): 81, 2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-30086792

RESUMEN

Laboratory cats were infected with a serotype I cat-passaged field strain of FIP virus (FIPV) and peritoneal cells harvested 2-3 weeks later at onset of lymphopenia, fever and serositis. Comparison peritoneal cells were collected from four healthy laboratory cats by peritoneal lavage and macrophages predominated in both populations. Differential mRNA expression analysis identified 5621 genes as deregulated in peritoneal cells from FIPV infected versus normal cats; 956 genes showed > 2.0 Log2 Fold Change (Log2FC) and 1589 genes showed < -2.0 Log2FC. Eighteen significantly upregulated pathways were identified by InnateDB enrichment analysis. These pathways involved apoptosis, cytokine-cytokine receptor interaction, pathogen recognition, Jak-STAT signaling, NK cell mediated cytotoxicity, several chronic infectious diseases, graft versus host disease, allograft rejection and certain autoimmune disorders. Infected peritoneal macrophages were activated M1 type based on pattern of RNA expression. Apoptosis was found to involve large virus-laden peritoneal macrophages more than less mature macrophages, suggesting that macrophage death played a role in virus dissemination. Gene transcripts for MHC I but not II receptors were upregulated, while mRNA for receptors commonly associated with virus attachment and identified in other coronaviruses were either not detected (APN, L-SIGN), not deregulated (DDP-4) or down-regulated (DC-SIGN). However, the mRNA for FcγRIIIA (CD16A/ADCC receptor) was significantly upregulated, supporting entry of virus as an immune complex. Analysis of KEGG associated gene transcripts indicated that Th1 polarization overshadowed Th2 polarization, but the addition of relevant B cell associated genes previously linked to FIP macrophages tended to alter this perception.


Asunto(s)
Coronavirus Felino/fisiología , Células Epiteliales/virología , Peritonitis Infecciosa Felina/virología , Animales , Enfermedades de los Gatos , Gatos , Células Cultivadas , Células Epiteliales/fisiología , Peritonitis Infecciosa Felina/fisiopatología , Reacción en Cadena de la Polimerasa/veterinaria , Análisis de Secuencia de ARN/veterinaria
5.
Appl Environ Microbiol ; 81(18): 6446-50, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26162871

RESUMEN

Bartonella infection among cats from shelters can pose a health risk to adopters. Bartonella henselae is the most common species, with B. clarridgeiae and B. koehlerae being less common. The lower rates of infection by the latter species may reflect their rarity or an inefficiency of culture techniques. To assess the incidence of infection, blood cultures, serology, and PCR testing were performed on 193 kittens (6 to 17 weeks old) and 158 young adult cats (5 to 12 months old) from a modern regional shelter. Classical B. henselae culture medium was compared to a medium supplemented with insect cell growth factors. Bartonella colonies were isolated from 115 (32.8%) animals, including 50 (25.9%) kittens and 65 (41.1%) young adults. Therefore, young adults were twice as likely to be culture positive as kittens. Enhanced culture methods did not improve either the isolation rate or species profile. B. henselae was isolated from 40 kittens and 55 young adults, while B. clarridgeiae was cultured from 10 animals in each group. B. koehlerae was detected in one young adult by PCR only. B. henselae genotype II was more commonly isolated from young adults, and genotype I was more frequently isolated from kittens. Kittens were 4.7 times more likely to have a very high bacterial load than young adults. A significantly higher incidence of bacteremia in the fall and winter than in the spring and summer was observed. Bartonella antibodies were detected in 10% (19/193) of kittens and 46.2% (73/158) of young adults, with culture-positive kittens being 9.4 times more likely to be seronegative than young adults.


Asunto(s)
Infecciones por Bartonella/veterinaria , Bartonella/aislamiento & purificación , Enfermedades de los Gatos/epidemiología , Factores de Edad , Animales , Anticuerpos Antibacterianos/sangre , Bacteriemia/microbiología , Bacteriemia/veterinaria , Bartonella/clasificación , Bartonella/crecimiento & desarrollo , Bartonella/inmunología , Infecciones por Bartonella/epidemiología , Infecciones por Bartonella/inmunología , Infecciones por Bartonella/microbiología , Bartonella henselae/inmunología , Bartonella henselae/aislamiento & purificación , Bartonella henselae/patogenicidad , Enfermedades de los Gatos/microbiología , Gatos , ADN Bacteriano , Genotipo , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , San Francisco , Estaciones del Año
6.
Mol Biol Evol ; 30(5): 1103-18, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23408799

RESUMEN

Dogs originated more than 14,000 BP, but the location(s) where they first arose is uncertain. The earliest archeological evidence of ancient dogs was discovered in Europe and the Middle East, some 5-7 millennia before that from Southeast Asia. However, mitochondrial DNA analyses suggest that most modern dogs derive from Southeast Asia, which has fueled the controversial hypothesis that dog domestication originated in this region despite the lack of supporting archeological evidence. We propose and investigate with Y chromosomes an alternative hypothesis for the proximate origins of dogs from Southeast Asia--a massive Neolithic expansion of dogs from this region that largely replaced more primitive dogs to the west and north. Previous attempts to test matrilineal findings with independent patrilineal markers have lacked the necessary genealogical resolution and mutation rate estimates. Here, we used Y chromosome genotypes, composed of 29 single-nucleotide polymorphism (SNPs) and 5 single tandem repeats (STRs), from 338 Australian dingoes, New Guinea singing dogs, and village dogs from Island Southeast Asia, along with modern European breed dogs, to estimate the evolutionary mutation rates of Y chromosome STRs based on calibration to the independently known age of the dingo population. Dingoes exhibited a unique haplogroup characterized by a single distinguishing SNP mutation and 14 STR haplotypes. The age of the European haplogroup was estimated to be only 1.7 times older than that of the dingo population, suggesting an origin during the Neolithic rather than the Paleolithic (as predicted by the Southeast Asian origins hypothesis). We hypothesize that isolation of Neolithic dogs from wolves in Southeast Asia was a key step accelerating their phenotypic transformation, enhancing their value in trade and as cargo, and enabling them to rapidly expand and replace more primitive dogs to the West. Our findings also suggest that dingoes could have arrived in Australia directly from Taiwan, independently of later dispersals of dogs through Thailand to Island Southeast Asia.


Asunto(s)
Haplotipos/genética , Polimorfismo de Nucleótido Simple/genética , Cromosoma Y/genética , Animales , Asia Sudoriental , Perros , Mutación , Secuencias Repetidas en Tándem/genética
7.
Mamm Genome ; 25(7-8): 354-62, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24777202

RESUMEN

Hereditary eye diseases of animals serve as excellent models of human ocular disorders and assist in the development of gene and drug therapies for inherited forms of blindness. Several primary hereditary eye conditions affecting various ocular tissues and having different rates of progression have been documented in domestic cats. Gene therapy for canine retinopathies has been successful, thus the cat could be a gene therapy candidate for other forms of retinal degenerations. The current study investigates a hereditary, autosomal recessive, retinal degeneration specific to Persian cats. A multi-generational pedigree segregating for this progressive retinal atrophy was genotyped using a 63 K SNP array and analyzed via genome-wide linkage and association methods. A multi-point parametric linkage analysis localized the blindness phenotype to a ~1.75 Mb region with significant LOD scores (Z ≈ 14, θ = 0.00) on cat chromosome E1. Genome-wide TDT, sib-TDT, and case-control analyses also consistently supported significant association within the same region on chromosome E1, which is homologous to human chromosome 17. Using haplotype analysis, a ~1.3 Mb region was identified as highly associated for progressive retinal atrophy in Persian cats. Several candidate genes within the region are reasonable candidates as a potential causative gene and should be considered for molecular analyses.


Asunto(s)
Enfermedades de los Gatos/genética , Progresión de la Enfermedad , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Degeneración Retiniana/genética , Degeneración Retiniana/veterinaria , Animales , Atrofia , Estudios de Casos y Controles , Gatos , Cromosomas de los Mamíferos/genética , Perros , Femenino , Estudios de Asociación Genética , Sitios Genéticos , Marcadores Genéticos , Genoma/genética , Haplotipos/genética , Humanos , Desequilibrio de Ligamiento/genética , Masculino , Linaje , Persia , Polimorfismo de Nucleótido Simple/genética
8.
Anim Genet ; 44(5): 569-78, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23638899

RESUMEN

We report a familial enamel hypoplasia in Italian Greyhounds resembling non-syndromic autosomal recessive amelogenesis imperfecta (AI) of humans. The condition uniformly affects deciduous and permanent teeth and is manifested by enamel roughening/thinning and brownish mottling. Affected teeth are often small and pointed with increased gaps. However, basic tooth structure is usually maintained throughout life, and fractures and dental cavities are not a serious problem as in humans. No tissues or organs other than teeth were affected by this mutation, and there was no relationship between enamel hypoplasia and either autoimmunity or periodontal disease, which also are prevalent in the breed. The enamel hypoplasia was associated with a 5-bp deletion in exon 10 of the enamelin (ENAM) gene. The prevalence of the enamel defect in Italian Greyhounds was 14%, and 30% of dogs with normal teeth were carriers. Genome analyses suggest that the trait is under inadvertent positive selection. Based on the deletion detected in the ENAM gene, a genetic test was developed for identifying mutation carriers, which would enable breeders to manage the trait.


Asunto(s)
Amelogénesis Imperfecta/veterinaria , Proteínas del Esmalte Dental/genética , Enfermedades de los Perros/genética , Amelogénesis Imperfecta/genética , Secuencia de Aminoácidos , Animales , Perros , Genes Recesivos , Datos de Secuencia Molecular , Mutación , Alineación de Secuencia
9.
J Vet Intern Med ; 34(4): 1587-1593, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32441826

RESUMEN

Feline infectious peritonitis (FIP) is caused by a mutant biotype of the feline enteric coronavirus. The resulting FIP virus (FIPV) commonly causes central nervous system (CNS) and ocular pathology in cases of noneffusive disease. Over 95% of cats with FIP will succumb to disease in days to months after diagnosis despite a variety of historically used treatments. Recently developed antiviral drugs have shown promise in treatment of nonneurological FIP, but data from neurological FIP cases are limited. Four cases of naturally occurring FIP with CNS involvement were treated with the antiviral nucleoside analogue GS-441524 (5-10 mg/kg) for at least 12 weeks. Cats were monitored serially with physical, neurologic, and ophthalmic examinations. One cat had serial magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) analysis (including feline coronavirus [FCoV]) titers and FCoV reverse transcriptase [RT]-PCR) and serial ocular imaging using Fourier-domain optical coherence tomography (FD-OCT) and in vivo confocal microscopy (IVCM). All cats had a positive response to treatment. Three cats are alive off treatment (528, 516, and 354 days after treatment initiation) with normal physical and neurologic examinations. One cat was euthanized 216 days after treatment initiation following relapses after primary and secondary treatment. In 1 case, resolution of disease was defined based on normalization of MRI and CSF findings and resolution of cranial and caudal segment disease with ocular imaging. Treatment with GS-441524 shows clinical efficacy and may result in clearance and long-term resolution of neurological FIP. Dosages required for CNS disease may be higher than those used for nonneurological FIP.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Antivirales/uso terapéutico , Peritonitis Infecciosa Felina/tratamiento farmacológico , Adenosina Trifosfato/administración & dosificación , Adenosina Trifosfato/uso terapéutico , Animales , Antivirales/administración & dosificación , Gatos , Femenino , Masculino
10.
Genomics ; 91(1): 12-21, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18060738

RESUMEN

The diaspora of the modern cat was traced with microsatellite markers from the presumed site of domestication to distant regions of the world. Genetic data were derived from over 1100 individuals, representing 17 random-bred populations from five continents and 22 breeds. The Mediterranean was reconfirmed to be the probable site of domestication. Genetic diversity has remained broad throughout the world, with distinct genetic clustering in the Mediterranean basin, Europe/America, Asia and Africa. However, Asian cats appeared to have separated early and expanded in relative isolation. Most breeds were derived from indigenous cats of their purported regions of origin. However, the Persian and Japanese bobtail were more aligned with European/American than with Mediterranean basin or Asian clusters. Three recently derived breeds were not distinct from their parental breeds of origin. Pure breeding was associated with a loss of genetic diversity; however, this loss did not correlate with breed popularity or age.


Asunto(s)
Cruzamiento , Gatos/genética , Repeticiones de Microsatélite/genética , Filogenia , Animales , Genética de Población
11.
Vet Microbiol ; 237: 108398, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31585653

RESUMEN

Feline infectious peritonitis (FIP) is a highly fatal disease caused by a virulent feline coronavirus in domestic and wild cats. We have previously reported the synthesis of potent coronavirus 3C-like protease (3CLpro) inhibitors and the efficacy of a protease inhibitor, GC376, in client-owned cats with FIP. In this study, we studied the effect of the amino acid changes in 3CLpro of feline coronavirus from a feline patient who received antiviral treatment for prolonged duration. We generated recombinant 3CLpro containing the identified amino acid changes (N25S, A252S or K260 N) and determined their susceptibility to protease inhibitors in the fluorescence resonance energy transfer assay. The assay showed that N25S in 3CLpro confers a small change (up to 1.68-fold increase in the 50% inhibitory concentration) in susceptibility to GC376, but other amino acid changes do not affect susceptibility. Modelling of 3CLpro carrying the amino acid changes was conducted to probe the structural basis for these findings. The results of this study may explain the observed absence of clinical resistance to the long-term antiviral treatment in the patients.


Asunto(s)
Enfermedades de los Gatos/virología , Infecciones por Coronaviridae/veterinaria , Coronavirus Felino/enzimología , Peritonitis Infecciosa Felina/complicaciones , Inhibidores de Proteasas/uso terapéutico , Pirrolidinas/uso terapéutico , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Gatos , Infecciones por Coronaviridae/tratamiento farmacológico , Infecciones por Coronaviridae/virología , Masculino , Modelos Moleculares , Inhibidores de Proteasas/farmacología , Conformación Proteica , Pirrolidinas/farmacología , ARN Viral , Alineación de Secuencia , Ácidos Sulfónicos , Proteínas Virales/química , Proteínas Virales/metabolismo
12.
J Feline Med Surg ; 21(4): 271-281, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30755068

RESUMEN

OBJECTIVES: The aim of this study was to determine the safety and efficacy of the nucleoside analog GS-441524 for cats suffering from various forms of naturally acquired feline infectious peritonitis (FIP). METHODS: Cats ranged from 3.4-73 months of age (mean 13.6 months); 26 had effusive or dry-to-effusive FIP and five had non-effusive disease. Cats with severe neurological and ocular FIP were not recruited. The group was started on GS-441524 at a dosage of 2.0 mg/kg SC q24h for at least 12 weeks and increased when indicated to 4.0 mg/kg SC q24h. RESULTS: Four of the 31 cats that presented with severe disease died or were euthanized within 2-5 days and a fifth cat after 26 days. The 26 remaining cats completed the planned 12 weeks or more of treatment. Eighteen of these 26 cats remain healthy at the time of publication (OnlineFirst, February 2019) after one round of treatment, while eight others suffered disease relapses within 3-84 days. Six of the relapses were non-neurological and two neurological. Three of the eight relapsing cats were treated again at the same dosage, while five cats had the dosage increased from 2.0 to 4.0 mg/kg q24h. The five cats treated a second time at the higher dosage, including one with neurological disease, responded well and also remain healthy at the time of publication. However, one of the three cats re-treated at the original lower dosage relapsed with neurological disease and was euthanized, while the two remaining cats responded favorably but relapsed a second time. These two cats were successfully treated a third time at the higher dosage, producing 25 long-time survivors. One of the 25 successfully treated cats was subsequently euthanized due to presumably unrelated heart disease, while 24 remain healthy. CONCLUSIONS AND RELEVANCE: GS-441524 was shown to be a safe and effective treatment for FIP. The optimum dosage was found to be 4.0 mg/kg SC q24h for at least 12 weeks.


Asunto(s)
Peritonitis Infecciosa Felina/tratamiento farmacológico , Nucleósidos/efectos adversos , Nucleósidos/uso terapéutico , Animales , Gatos , Femenino , Masculino
14.
J Feline Med Surg ; 10(6): 529-41, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18538604

RESUMEN

Fifty-one specific pathogen-free (SPF) cats 10 weeks to 13 years of age were infected with a cat-to-cat fecal-oral passed strain of feline enteric coronavirus (FECV). Clinical signs ranged from unapparent to a mild and self-limiting diarrhea. Twenty-nine of these cats were FECV naïve before infection and followed sequentially for fecal virus shedding and antibody responses over a period of 8-48 months. Fecal shedding, as determined by real-time polymerase chain reaction (RT-PCR) from rectal swabs, appeared within a week and was significantly higher in kittens than older cats. FECV shedding remained at high levels for 2-10 months before eventually evolving into one of three excretion patterns. Eleven cats shed the virus persistently at varying levels over an observation period of 9-24 months. Eleven cats appeared to have periods of virus shedding interlaced with periods of non-shedding (intermittent or recurrent shedders), and seven cats ceased shedding after 5-19 months (average 12 months). There was no change in the patterns of virus shedding among cats that were excreting FECV at the time of a secondary challenge exposure. Four cats, which had ceased shedding, re-manifested a primary type infection when secondarily infected. Cats with higher feline coronavirus (FCoV) antibody titers were significantly more likely to shed virus, while cats with lower titers were significantly less likely to be shedding. Twenty-two kittens born to experimentally infected project queens began shedding virus spontaneously, but never before 9-10 weeks of age. Natural kittenhood infections appeared to be low grade and abortive. However, a characteristic primary type infection occurred following experimental infection with FECV at 12-15 weeks of age. Pregnancy, parturition and lactation had no influence on fecal shedding by queens. Methylprednisolone acetate treatment did not induce non-shedders to shed and shedders to increase shedding.


Asunto(s)
Anticuerpos Antivirales/sangre , Enfermedades de los Gatos/virología , Infecciones por Coronavirus/veterinaria , Coronavirus Felino/patogenicidad , Heces/virología , Factores de Edad , Animales , Animales Recién Nacidos , Enfermedades de los Gatos/patología , Enfermedades de los Gatos/transmisión , Gatos , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Coronavirus Felino/inmunología , Coronavirus Felino/aislamiento & purificación , Femenino , Masculino , Reacción en Cadena de la Polimerasa , Organismos Libres de Patógenos Específicos , Esparcimiento de Virus
15.
J Feline Med Surg ; 20(4): 378-392, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28901812

RESUMEN

Objectives The safety and efficacy of the 3C-like protease inhibitor GC376 was tested on a cohort of client-owned cats with various forms of feline infectious peritonitis (FIP). Methods Twenty cats from 3.3-82 months of age (mean 10.4 months) with various forms of FIP were accepted into a field trial. Fourteen cats presented with wet or dry-to-wet FIP and six cats presented with dry FIP. GC376 was administered subcutaneously every 12 h at a dose of 15 mg/kg. Cats with neurologic signs were excluded from the study. Results Nineteen of 20 cats treated with GC376 regained outward health within 2 weeks of initial treatment. However, disease signs recurred 1-7 weeks after primary treatment and relapses and new cases were ultimately treated for a minimum of 12 weeks. Relapses no longer responsive to treatment occurred in 13 of these 19 cats within 1-7 weeks of initial or repeat treatment(s). Severe neurologic disease occurred in 8/13 cats that failed treatment and five cats had recurrences of abdominal lesions. At the time of writing, seven cats were in disease remission. Five kittens aged 3.3-4.4 months with wet FIP were treated for 12 weeks and have been in disease remission after stopping treatment and at the time of writing for 5-14 months (mean 11.2 months). A sixth kitten was in remission for 10 weeks after 12 weeks of treatment, relapsed and is responding to a second round of GC376. The seventh was a 6.8-year-old cat with only mesenteric lymph node involvement that went into remission after three relapses that required progressively longer repeat treatments over a 10 month period. Side effects of treatment included transient stinging upon injection and occasional foci of subcutaneous fibrosis and hair loss. There was retarded development and abnormal eruption of permanent teeth in cats treated before 16-18 weeks of age. Conclusions and relevance GC376 showed promise in treating cats with certain presentations of FIP and has opened the door to targeted antiviral drug therapy.


Asunto(s)
Antivirales/administración & dosificación , Coronavirus Felino/efectos de los fármacos , Peritonitis Infecciosa Felina/tratamiento farmacológico , Inhibidores de Proteasas/administración & dosificación , Animales , Gatos , Peritonitis Infecciosa Felina/diagnóstico , Femenino , Replicación Viral/efectos de los fármacos
17.
Sci Rep ; 8(1): 7024, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29728693

RESUMEN

The development of high throughput SNP genotyping technologies has improved the genetic dissection of simple and complex traits in many species including cats. The properties of feline 62,897 SNPs Illumina Infinium iSelect DNA array are described using a dataset of over 2,000 feline samples, the most extensive to date, representing 41 cat breeds, a random bred population, and four wild felid species. Accuracy and efficiency of the array's genotypes and its utility in performing population-based analyses were evaluated. Average marker distance across the array was 37,741 Kb, and across the dataset, only 1% (625) of the markers exhibited poor genotyping and only 0.35% (221) showed Mendelian errors. Marker polymorphism varied across cat breeds and the average minor allele frequency (MAF) of all markers across domestic cats was 0.21. Population structure analysis confirmed a Western to Eastern structural continuum of cat breeds. Genome-wide linkage disequilibrium ranged from 50-1,500 Kb for domestic cats and 750 Kb for European wildcats (Felis silvestris silvestris). Array use in trait association mapping was investigated under different modes of inheritance, selection and population sizes. The efficient array design and cat genotype dataset continues to advance the understanding of cat breeds and will support monogenic health studies across feline breeds and populations.

18.
Retrovirology ; 4: 25, 2007 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-17417971

RESUMEN

BACKGROUND: We reported previously on the emergence and clinical implications of simian immunodeficiency virus (SIVmac251) mutants with a K65R mutation in reverse transcriptase (RT), and the role of CD8+ cell-mediated immune responses in suppressing viremia during tenofovir therapy. Because of significant sequence differences between SIV and HIV-1 RT that affect drug susceptibilities and mutational patterns, it is unclear to what extent findings with SIV can be extrapolated to HIV-1 RT. Accordingly, to model HIV-1 RT responses, 12 macaques were inoculated with RT-SHIV, a chimeric SIV containing HIV-1 RT, and started on prolonged tenofovir therapy 5 months later. RESULTS: The early virologic response to tenofovir correlated with baseline viral RNA levels and expression of the MHC class I allele Mamu-A*01. For all animals, sensitive real-time PCR assays detected the transient emergence of K70E RT mutants within 4 weeks of therapy, which were then replaced by K65R mutants within 12 weeks of therapy. For most animals, the occurrence of these mutations preceded a partial rebound of plasma viremia to levels that remained on average 10-fold below baseline values. One animal eventually suppressed K65R viremia to undetectable levels for more than 4 years; sequential experiments using CD8+ cell depletion and tenofovir interruption demonstrated that both CD8+ cells and continued tenofovir therapy were required for sustained suppression of viremia. CONCLUSION: This is the first evidence that tenofovir therapy can select directly for K70E viral mutants in vivo. The observations on the clinical implications of the K65R RT-SHIV mutants were consistent with those of SIVmac251, and suggest that for persons infected with K65R HIV-1 both immune-mediated and drug-dependent antiviral activities play a role in controlling viremia. These findings suggest also that even in the presence of K65R virus, continuation of tenofovir treatment as part of HAART may be beneficial, particularly when assisted by antiviral immune responses.


Asunto(s)
Adenina/análogos & derivados , Sustitución de Aminoácidos , Farmacorresistencia Viral/genética , Transcriptasa Inversa del VIH/genética , VIH-1/genética , Organofosfonatos/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Adenina/farmacología , Adenina/uso terapéutico , Animales , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Depleción Linfocítica , Macaca , Mutación Missense , Organofosfonatos/uso terapéutico , ARN Viral/sangre , Selección Genética , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Tenofovir , Carga Viral , Viremia
19.
BMC Genet ; 8: 27, 2007 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-17553163

RESUMEN

BACKGROUND: The cat has one common blood group with two major serotypes, blood type A that is dominant to type B. A rare type AB may also be allelic and is suspected to be recessive to A and dominant to B. Cat blood type antigens are defined, N-glycolylneuraminic acid (NeuGc) is associated with type A and N-acetylneuraminic acid (NeuAc) with type B. The enzyme cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) determines the sugar bound to the red cell by converting NeuAc to NeuGc. Thus, mutations in CMAH may cause the A and B blood types. RESULTS: Genomic sequence of CMAH from eight cats and the cDNA of four cats representing all blood types were analyzed to identify causative mutations. DNA variants consistent with the blood types were genotyped in over 200 cats. Five SNPs and an indel formed haplotypes that were consistent with each blood type. CONCLUSION: Mutations in type B cats likely disrupt the gene function of CMAH, leading to a predominance of NeuAc. Type AB concordant variants were not identified, however, cDNA species suggest an alternative allele that activates a downstream start site, leading to a CMAH protein that would be altered at the 5' region. The cat AB blood group system is proposed to be designated by three alleles, A > aab > b. The A and b CMAH alleles described herein can distinguish type A and type B cats without blood sample collections. CMAH represents the first blood group gene identified outside of non-human primates and humans.


Asunto(s)
Antígenos de Grupos Sanguíneos/genética , Gatos/sangre , Gatos/genética , Oxigenasas de Función Mixta/genética , Mutación/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Análisis Mutacional de ADN , ADN Complementario/genética , Datos de Secuencia Molecular
20.
Artículo en Inglés | MEDLINE | ID: mdl-29201383

RESUMEN

BACKGROUND: Pure breeding of dogs has led to over 700 heritable disorders, of which almost 300 are Mendelian in nature. Seventy percent of the characterized mutations have an autosomal recessive mode of inheritance, indicative of positive selection during bouts of inbreeding primarily for new desired conformational traits. Samoyed suffer from several common complex genetic disorders, but up to this time only two X-linked and one autosomal dominant disorder have been identified. Previous studies based on pedigrees and SNP arrays have concluded that Samoyed breeders have done a good job in maintaining genetic diversity and avoiding excessive inbreeding. This may explain why autosomal recessive disorders have not occurred to the extent observed in many other breeds. However, an enamel hypoplasia analogous to a form of autosomal recessive amelogenesis imperfecta (ARAI) in humans has been recently characterized in Samoyed, although the causative mutation appears to have existed for three or more decades. The rise of such a mutation indicates that bouts of inbreeding for desired conformational traits are still occurring despite an old and well-defined breed standard. Therefore, the present study has two objectives: 1) measure genetic diversity in the breed using DNA and short tandem repeats (STR), and 2) identify the exact mutation responsible for enamel hypoplasia in the breed, possible explanations for its recent spread, and the effect of eliminating the mutation on existing genetic diversity. RESULTS: The recent discovery of an autosomal recessive amelogenesis imperfecta (ARAI) in Samoyed provides an opportunity to study the mutation as well as genetic factors that favored its occurrence and subsequent spread. The first step in the study was to use 33 short tandem repeat (STR) loci on 25/38 autosomes and seven STRs across the dog leukocyte antigen (DLA) class I and II regions on CFA12 to determine the DNA-based genetic profile of 182 individuals from North America, Europe and Australia. Samoyed from the three continents constituted a single breed with only slight genetic differences. Breed-wide genetic diversity was low, most likely from a small founder population and subsequent artificial genetic bottlenecks. Two alleles at each autosome locus occurred in 70-95% of the dogs and 54% of alleles were homozygous. The number of DLA class I and II haplotypes was also low and three class I and two class II haplotypes occurred in 80-90% of individuals. Therefore, most Samoyed belong to two lines, with most dogs possessing a minority of existing genetic diversity and a minority of dogs containing a majority of diversity. Although contemporary Samoyed lack genetic diversity, the bulk of parents are as unrelated as possible with smaller subpopulations either more inbred or outbred than the total population. A familial disorder manifested by hypocalcification of enamel has been recently identified. A genome wide association study (GWAS) on seven affected and five unrelated healthy dogs pointed to a region of extended homozygosity on Canis familiaris autosome 8 (CFA8). The region contained a gene in the solute carrier 24 family (SCL24A4) that encodes a protein involved in potassium dependent sodium/calcium exchange and transport. Mutations in this gene were recently found to cause a similar type of enamel hypoplasia in people. Sequencing of this candidate gene revealed a 21 bp duplication in exon 17. A test for the duplication was in concordance with the disease phenotype. The exact incidence of affected dogs is unknown, but 12% of the 168 healthy dogs tested were heterozygous for the mutation. This population was biased toward close relatives, so a liberal estimate of the incidence of affected dogs in the breed would be around 3.6/1000. Theoretical calculations based on the comparison of the whole population with a population devoid of carriers indicated that eliminating the trait would not affect existing genetic diversity at this time. CONCLUSIONS: The contemporary Samoyed, like many other breeds, has retained only a small portion of the genetic diversity that exists among all dogs. This limited genetic diversity along with positive genetic selection for desirable traits has led to at least three simple non-recessive genetic disorders and a low incidence of complex genetic traits such as autoimmune disease and hip dysplasia. Unlike many other pure breeds, the Samoyed has been spared the spate of deleterious autosomal recessive traits that have plagued many other pure breeds. However, ARAI due to a mutation in the SCL24A4 gene has apparently existed in the breed for several decades but is being increasingly diagnosed. The increase in diseased dogs is most likely due to a period of intensified positive selection for some desired conformational trait. A genetic test has been developed for identifying the mutation carriers which will enable the breeders to eliminate enamel hypoplasia in Samoyed by selective breeding and it appears that this mutation can be eliminated now without loss of genetic diversity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA