Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 145(22): 1663-1683, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35400201

RESUMEN

BACKGROUND: Transcriptional reconfiguration is central to heart failure, the most common cause of which is dilated cardiomyopathy (DCM). The effect of 3-dimensional chromatin topology on transcriptional dysregulation and pathogenesis in human DCM remains elusive. METHODS: We generated a compendium of 3-dimensional epigenome and transcriptome maps from 101 biobanked human DCM and nonfailing heart tissues through highly integrative chromatin immunoprecipitation (H3K27ac [acetylation of lysine 27 on histone H3]), in situ high-throughput chromosome conformation capture, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin using sequencing, and RNA sequencing. We used human induced pluripotent stem cell-derived cardiomyocytes and mouse models to interrogate the key transcription factor implicated in 3-dimensional chromatin organization and transcriptional regulation in DCM pathogenesis. RESULTS: We discovered that the active regulatory elements (H3K27ac peaks) and their connectome (H3K27ac loops) were extensively reprogrammed in DCM hearts and contributed to transcriptional dysregulation implicated in DCM development. For example, we identified that nontranscribing NPPA-AS1 (natriuretic peptide A antisense RNA 1) promoter functions as an enhancer and physically interacts with the NPPA (natriuretic peptide A) and NPPB (natriuretic peptide B) promoters, leading to the cotranscription of NPPA and NPPB in DCM hearts. We revealed that DCM-enriched H3K27ac loops largely resided in conserved high-order chromatin architectures (compartments, topologically associating domains) and their anchors unexpectedly had equivalent chromatin accessibility. We discovered that the DCM-enriched H3K27ac loop anchors exhibited a strong enrichment for HAND1 (heart and neural crest derivatives expressed 1), a key transcription factor involved in early cardiogenesis. In line with this, its protein expression was upregulated in human DCM and mouse failing hearts. To further validate whether HAND1 is a causal driver for the reprogramming of enhancer-promoter connectome in DCM hearts, we performed comprehensive 3-dimensional epigenome mappings in human induced pluripotent stem cell-derived cardiomyocytes. We found that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced a distinct gain of enhancer-promoter connectivity and correspondingly increased the expression of their connected genes implicated in DCM pathogenesis, thus recapitulating the transcriptional signature in human DCM hearts. Electrophysiology analysis demonstrated that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced abnormal calcium handling. Furthermore, cardiomyocyte-specific overexpression of Hand1 in the mouse hearts resulted in dilated cardiac remodeling with impaired contractility/Ca2+ handling in cardiomyocytes, increased ratio of heart weight/body weight, and compromised cardiac function, which were ascribed to recapitulation of transcriptional reprogramming in DCM. CONCLUSIONS: This study provided novel chromatin topology insights into DCM pathogenesis and illustrated a model whereby a single transcription factor (HAND1) reprograms the genome-wide enhancer-promoter connectome to drive DCM pathogenesis.


Asunto(s)
Cardiomiopatía Dilatada , Células Madre Pluripotentes Inducidas , Animales , Cardiomiopatía Dilatada/metabolismo , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Factores de Transcripción/genética
2.
Genes Dev ; 29(7): 702-17, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25805847

RESUMEN

Stem cells can self-renew and differentiate into multiple cell types. These characteristics are maintained by the combination of specific signaling pathways and transcription factors that cooperate to establish a unique epigenetic state. Despite the broad interest of these mechanisms, the precise molecular controls by which extracellular signals organize epigenetic marks to confer multipotency remain to be uncovered. Here, we use human embryonic stem cells (hESCs) to show that the Activin-SMAD2/3 signaling pathway cooperates with the core pluripotency factor NANOG to recruit the DPY30-COMPASS histone modifiers onto key developmental genes. Functional studies demonstrate the importance of these interactions for correct histone 3 Lys4 trimethylation and also self-renewal and differentiation. Finally, genetic studies in mice show that Dpy30 is also necessary to maintain pluripotency in the pregastrulation embryo, thereby confirming the existence of similar regulations in vivo during early embryonic development. Our results reveal the mechanisms by which extracellular factors coordinate chromatin status and cell fate decisions in hESCs.


Asunto(s)
Activinas/metabolismo , Diferenciación Celular/genética , Cromatina/genética , Histonas/genética , Proteínas de Homeodominio/metabolismo , Proteína Nodal/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Cromatina/metabolismo , Embrión de Mamíferos , Células Madre Embrionarias , Epigénesis Genética/genética , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Ratones , Proteína Homeótica Nanog , Proteína Smad2/metabolismo , Proteína smad3/metabolismo
3.
Development ; 142(8): 1528-41, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25813541

RESUMEN

The epicardium has emerged as a multipotent cardiovascular progenitor source with therapeutic potential for coronary smooth muscle cell, cardiac fibroblast (CF) and cardiomyocyte regeneration, owing to its fundamental role in heart development and its potential ability to initiate myocardial repair in injured adult tissues. Here, we describe a chemically defined method for generating epicardium and epicardium-derived smooth muscle cells (EPI-SMCs) and CFs from human pluripotent stem cells (HPSCs) through an intermediate lateral plate mesoderm (LM) stage. HPSCs were initially differentiated to LM in the presence of FGF2 and high levels of BMP4. The LM was robustly differentiated to an epicardial lineage by activation of WNT, BMP and retinoic acid signalling pathways. HPSC-derived epicardium displayed enhanced expression of epithelial- and epicardium-specific markers, exhibited morphological features comparable with human foetal epicardial explants and engrafted in the subepicardial space in vivo. The in vitro-derived epicardial cells underwent an epithelial-to-mesenchymal transition when treated with PDGF-BB and TGFß1, resulting in vascular SMCs that displayed contractile ability in response to vasoconstrictors. Furthermore, the EPI-SMCs displayed low density lipoprotein uptake and effective lowering of lipoprotein levels upon treatment with statins, similar to primary human coronary artery SMCs. Cumulatively, these findings suggest that HPSC-derived epicardium and EPI-SMCs could serve as important tools for studying human cardiogenesis, and as a platform for vascular disease modelling and drug screening.


Asunto(s)
Pericardio/citología , Pericardio/metabolismo , Células Madre Pluripotentes/citología , Western Blotting , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Citometría de Flujo , Humanos , Inmunohistoquímica , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/fisiología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Development ; 142(12): 2121-35, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26015544

RESUMEN

The transcription factor brachyury (T, BRA) is one of the first markers of gastrulation and lineage specification in vertebrates. Despite its wide use and importance in stem cell and developmental biology, its functional genomic targets in human cells are largely unknown. Here, we use differentiating human embryonic stem cells to study the role of BRA in activin A-induced endoderm and BMP4-induced mesoderm progenitors. We show that BRA has distinct genome-wide binding landscapes in these two cell populations, and that BRA interacts and collaborates with SMAD1 or SMAD2/3 signalling to regulate the expression of its target genes in a cell-specific manner. Importantly, by manipulating the levels of BRA in cells exposed to different signalling environments, we demonstrate that BRA is essential for mesoderm but not for endoderm formation. Together, our data illuminate the function of BRA in the context of human embryonic development and show that the regulatory role of BRA is context dependent. Our study reinforces the importance of analysing the functions of a transcription factor in different cellular and signalling environments.


Asunto(s)
Células Madre Embrionarias/citología , Proteínas Fetales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neurogénesis/fisiología , Proteína Smad1/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Proteína Morfogenética Ósea 4/metabolismo , Línea Celular , Células Madre Embrionarias/metabolismo , Endodermo/citología , Gastrulación/fisiología , Humanos , Mesodermo/citología , Ratones , Ratones Transgénicos , Proteína Smad2/metabolismo , Proteína smad3/metabolismo
5.
Eur Respir J ; 51(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29449428

RESUMEN

Genetic defects in bone morphogenetic protein type II receptor (BMPRII) signalling and inflammation contribute to the pathogenesis of pulmonary arterial hypertension (PAH). The receptor is activated by bone morphogenetic protein (BMP) ligands, which also enhance BMPR2 transcription. A small-molecule BMP upregulator with selectivity on vascular endothelium would be a desirable therapeutic intervention for PAH.We assayed compounds identified in the screening of BMP2 upregulators for their ability to increase the expression of inhibitor of DNA binding 1 (Id1), using a dual reporter driven specifically in human embryonic stem cell-derived endothelial cells. These assays identified a novel piperidine, BMP upregulator 1 (BUR1), that increased endothelial Id1 expression with a half-maximal effective concentration of 0.098 µmol·L-1 Microarray analyses and immunoblotting showed that BUR1 induced BMP2 and prostaglandin-endoperoxide synthase 2 (PTGS2) expression. BUR1 effectively rescued deficient angiogenesis in autologous BMPR2+/R899X endothelial cells generated by CRISPR/Cas9 and patient cells.BUR1 prevented and reversed PAH in monocrotaline rats, and restored BMPRII downstream signalling and modulated the arachidonic acid pathway in the pulmonary arterial endothelium in the Sugen 5416/hypoxia PAH mouse model.In conclusion, using stem cell technology we have provided a novel small-molecule compound which regulates BMP2 and PTGS2 levels that might be useful for the treatment of PAH.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Ciclooxigenasa 2/metabolismo , Células Endoteliales/efectos de los fármacos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Piperidinas/farmacología , Animales , Línea Celular , Proliferación Celular , Dinoprostona/sangre , Modelos Animales de Enfermedad , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Humanos , Leucotrieno B4/sangre , Arteria Pulmonar/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Células Madre/citología
6.
Development ; 139(5): 829-41, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22318624

RESUMEN

Understanding human pre-implantation development has important implications for assisted reproductive technology (ART) and for human embryonic stem cell (hESC)-based therapies. Owing to limited resources, the cellular and molecular mechanisms governing this early stage of human development are poorly understood. Nonetheless, recent advances in non-invasive imaging techniques and molecular and genomic technologies have helped to increase our understanding of this fascinating stage of human development. Here, we summarize what is currently known about human pre-implantation embryo development and highlight how further studies of human pre-implantation embryos can be used to improve ART and to fully harness the potential of hESCs for therapeutic goals.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Desarrollo Embrionario , Técnicas Reproductivas Asistidas , Aneuploidia , Animales , Blastocisto/citología , Blastocisto/fisiología , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Células Madre Embrionarias/fisiología , Redes Reguladoras de Genes , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo
7.
Development ; 139(16): 2866-77, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22791892

RESUMEN

The inner cell mass of the mouse pre-implantation blastocyst comprises epiblast progenitor and primitive endoderm cells of which cognate embryonic (mESCs) or extra-embryonic (XEN) stem cell lines can be derived. Importantly, each stem cell type retains the defining properties and lineage restriction of their in vivo tissue of origin. Recently, we demonstrated that XEN-like cells arise within mESC cultures. This raises the possibility that mESCs can generate self-renewing XEN cells without the requirement for gene manipulation. We have developed a novel approach to convert mESCs to XEN cells (cXEN) using growth factors. We confirm that the downregulation of the pluripotency transcription factor Nanog and the expression of primitive endoderm-associated genes Gata6, Gata4, Sox17 and Pdgfra are necessary for cXEN cell derivation. This approach highlights an important function for Fgf4 in cXEN cell derivation. Paracrine FGF signalling compensates for the loss of endogenous Fgf4, which is necessary to exit mESC self-renewal, but not for XEN cell maintenance. Our cXEN protocol also reveals that distinct pluripotent stem cells respond uniquely to differentiation promoting signals. cXEN cells can be derived from mESCs cultured with Erk and Gsk3 inhibitors (2i), and LIF, similar to conventional mESCs. However, we find that epiblast stem cells (EpiSCs) derived from the post-implantation embryo are refractory to cXEN cell establishment, consistent with the hypothesis that EpiSCs represent a pluripotent state distinct from mESCs. In all, these findings suggest that the potential of mESCs includes the capacity to give rise to both extra-embryonic and embryonic lineages.


Asunto(s)
Células Madre Embrionarias/citología , Endodermo/citología , Endodermo/embriología , Células Madre Pluripotentes/citología , Activinas/administración & dosificación , Animales , Proteína Morfogenética Ósea 4/farmacología , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula , Células Cultivadas , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Endodermo/metabolismo , Factor 4 de Crecimiento de Fibroblastos/deficiencia , Factor 4 de Crecimiento de Fibroblastos/genética , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA6/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Comunicación Paracrina , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Factores de Transcripción SOXF/genética , Tretinoina/administración & dosificación
8.
Nat Rev Immunol ; 2(11): 859-71, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12415309

RESUMEN

Recent progress in deriving human embryonic stem (hES) cells and defining their capacity to differentiate has inspired hope that they could become a source of replacement cells for damaged or diseased tissues. We review the immunological barriers to transplanting hES cells and consider several potential solutions, including stem-cell banking, modification of the immunogenicity of donor cells and induction of tolerance to the graft. We evaluate the probable efficacy of these approaches with a view to facilitating the use of hES cells in clinical practice.


Asunto(s)
Sistema Inmunológico/fisiología , Trasplante de Células Madre , Células Madre/inmunología , Sistema del Grupo Sanguíneo ABO/inmunología , Animales , Incompatibilidad de Grupos Sanguíneos , Quimera/inmunología , Histocompatibilidad , Prueba de Histocompatibilidad , Humanos , Tolerancia Inmunológica , Inmunosupresores/uso terapéutico
9.
Genesis ; 52(11): 897-906, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25264302

RESUMEN

The Hairy-related transcription factor family of Notch- and ALK1-downstream transcriptional repressors, called Hrt/Hey/Hesr/Chf/Herp/Gridlock, has complementary and indispensable functions for vascular development. While mouse embryos null for either Hrt1/Hey1 or Hrt2/Hey2 did not show early vascular phenotypes, Hrt1/Hey1; Hrt2/Hey2 double null mice (H1(ko) /H2(ko) ) showed embryonic lethality with severe impairment of vascular morphogenesis. It remained unclear, however, whether Hrt/Hey functions are required in endothelial cells or vascular smooth muscle cells. In this study, we demonstrate that mice with endothelial-specific deletion of Hrt2/Hey2 combined with global Hrt1/Hey1 deletion (H1(ko) /H2(eko) ) show abnormal vascular morphogenesis and embryonic lethality. Their defects were characterized by the failure of vascular network formation in the yolk sac, abnormalities of embryonic vascular structures and impaired smooth muscle cell recruitment, and were virtually identical to the H1(ko) /H2(ko) phenotypes. Among signaling molecules implicated in vascular development, Robo4 expression was significantly increased and activation of Src family kinases was suppressed in endothelial cells of H1(ko) /H2(eko) embryos. The present study indicates an important role of Hrt1/Hey1 and Hrt2/Hey2 in endothelial cells during early vascular development, and further suggests involvement of Robo4 and Src family kinases in the mechanisms of embryonic vascular defects caused by the Hrt/Hey deficiency.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sistema Cardiovascular/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Morfogénesis/fisiología , Proteínas Represoras/metabolismo , Transducción de Señal/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Western Blotting , Endotelio/metabolismo , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica/genética , Inmunohistoquímica , Hibridación in Situ , Ratones , Morfogénesis/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular , Receptores Inmunológicos/metabolismo , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Reproduction ; 147(5): D1-12, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24518070

RESUMEN

It is imperative to unveil the full range of differentiated cell types into which human pluripotent stem cells (hPSCs) can develop. The need is twofold: it will delimit the therapeutic utility of these stem cells and is necessary to place their position accurately in the developmental hierarchy of lineage potential. Accumulated evidence suggested that hPSC could develop in vitro into an extraembryonic lineage (trophoblast (TB)) that is typically inaccessible to pluripotent embryonic cells during embryogenesis. However, whether these differentiated cells are truly authentic TB has been challenged. In this debate, we present a case for and a case against TB differentiation from hPSCs. By analogy to other differentiation systems, our debate is broadly applicable, as it articulates higher and more challenging standards for judging whether a given cell type has been genuinely produced from hPSC differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Trofoblastos/citología , Linaje de la Célula , Células Cultivadas , Células Madre Embrionarias/fisiología , Femenino , Humanos , Técnicas In Vitro , Morfogénesis/fisiología , Placenta/citología , Placenta/fisiología , Embarazo , Trofoblastos/fisiología
12.
Nat Genet ; 37(6): 585-7, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15864307

RESUMEN

We examined the allele-specific expression of six imprinted genes and the methylation profiles of three imprinting control regions to assess the epigenetic status of human embryonic stem cells. We identified generally monoallelic gene expression and normal methylation patterns. During prolonged passage, one cell line became biallelic with respect to H19, but without loss of the gametic methylation imprint. These data argue for a substantial degree of epigenetic stability in human embryonic stem cells.


Asunto(s)
Epigénesis Genética , Impresión Genómica , Células Madre , Alelos , Línea Celular , Células Cultivadas , Metilación de ADN , Embrión de Mamíferos , Expresión Génica , Genes Reguladores , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , ARN Largo no Codificante , ARN no Traducido/metabolismo
13.
Stem Cells ; 30(2): 161-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22109880

RESUMEN

Mouse epiblast stem cells (EpiSCs) derived from postimplantation embryos are developmentally and functionally different from embryonic stem cells (ESCs) generated from blastocysts. EpiSCs require Activin A and FGF2 signaling for self-renewal, similar to human ESCs (hESCs), while mouse ESCs require LIF and BMP4. Unlike ESCs, EpiSCs have undergone X-inactivation, similar to the tendency of hESCs. The shared self-renewal and X-inactivation properties of EpiSCs and hESCs suggest that they have an epigenetic state distinct from ESCs. This hypothesis predicts that EpiSCs would have monoallelic expression of most imprinted genes, like that observed in hESCs. Here, we confirm this prediction. By contrast, we find that mouse induced pluripotent stem cells (iPSCs) tend to lose imprinting similar to mouse ESCs. These findings reveal that iPSCs have an epigenetic status associated with their pluripotent state rather than their developmental origin. Our results also reinforce the view that hESCs and EpiSCs are in vitro counterparts, sharing an epigenetic status distinct from ESCs and iPSCs.


Asunto(s)
Epigénesis Genética , Impresión Genómica , Células Madre Pluripotentes/metabolismo , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Células Cultivadas , Metilación de ADN , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Nature ; 448(7150): 191-5, 2007 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-17597762

RESUMEN

Although the first mouse embryonic stem (ES) cell lines were derived 25 years ago using feeder-layer-based blastocyst cultures, subsequent efforts to extend the approach to other mammals, including both laboratory and domestic species, have been relatively unsuccessful. The most notable exceptions were the derivation of non-human primate ES cell lines followed shortly thereafter by their derivation of human ES cells. Despite the apparent common origin and the similar pluripotency of mouse and human embryonic stem cells, recent studies have revealed that they use different signalling pathways to maintain their pluripotent status. Mouse ES cells depend on leukaemia inhibitory factor and bone morphogenetic protein, whereas their human counterparts rely on activin (INHBA)/nodal (NODAL) and fibroblast growth factor (FGF). Here we show that pluripotent stem cells can be derived from the late epiblast layer of post-implantation mouse and rat embryos using chemically defined, activin-containing culture medium that is sufficient for long-term maintenance of human embryonic stem cells. Our results demonstrate that activin/Nodal signalling has an evolutionarily conserved role in the derivation and the maintenance of pluripotency in these novel stem cells. Epiblast stem cells provide a valuable experimental system for determining whether distinctions between mouse and human embryonic stem cells reflect species differences or diverse temporal origins.


Asunto(s)
Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Activinas/metabolismo , Animales , Técnicas de Cultivo de Célula , Línea Celular , Medios de Cultivo/química , Implantación del Embrión , Células Madre Embrionarias/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Madre Pluripotentes/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Transducción de Señal
15.
Nat Commun ; 14(1): 1722, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012244

RESUMEN

Cardiogenesis relies on the precise spatiotemporal coordination of multiple progenitor populations. Understanding the specification and differentiation of these distinct progenitor pools during human embryonic development is crucial for advancing our knowledge of congenital cardiac malformations and designing new regenerative therapies. By combining genetic labelling, single-cell transcriptomics, and ex vivo human-mouse embryonic chimeras we uncovered that modulation of retinoic acid signaling instructs human pluripotent stem cells to form heart field-specific progenitors with distinct fate potentials. In addition to the classical first and second heart fields, we observed the appearance of juxta-cardiac field progenitors giving rise to both myocardial and epicardial cells. Applying these findings to stem-cell based disease modelling we identified specific transcriptional dysregulation in first and second heart field progenitors derived from stem cells of patients with hypoplastic left heart syndrome. This highlights the suitability of our in vitro differentiation platform for studying human cardiac development and disease.


Asunto(s)
Células Madre Pluripotentes , Tretinoina , Humanos , Animales , Ratones , Tretinoina/farmacología , Corazón , Miocardio , Diferenciación Celular , Miocitos Cardíacos
16.
Stem Cells ; 29(8): 1176-85, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21630377

RESUMEN

Activin/Nodal signaling is necessary to maintain pluripotency of human embryonic stem cells (hESCs) and to induce their differentiation toward endoderm. However, the mechanisms by which Activin/Nodal signaling achieves these opposite functions remain unclear. To unravel these mechanisms, we examined the transcriptional network controlled in hESCs by Smad2 and Smad3, which represent the direct effectors of Activin/Nodal signaling. These analyses reveal that Smad2/3 participate in the control of the core transcriptional network characterizing pluripotency, which includes Oct-4, Nanog, FoxD3, Dppa4, Tert, Myc, and UTF1. In addition, similar experiments performed on endoderm cells confirm that a broad part of the transcriptional network directing differentiation is downstream of Smad2/3. Therefore, Activin/Nodal signaling appears to control divergent transcriptional networks in hESCs and in endoderm. Importantly, we observed an overlap between the transcriptional network downstream of Nanog and Smad2/3 in hESCs; whereas, functional studies showed that both factors cooperate to control the expression of pluripotency genes. Therefore, the effect of Activin/Nodal signaling on pluripotency and differentiation could be dictated by tissue specific Smad2/3 partners such as Nanog, explaining the mechanisms by which signaling pathways can orchestrate divergent cell fate decisions.


Asunto(s)
Activinas/metabolismo , Endodermo/citología , Redes Reguladoras de Genes , Proteína Nodal/metabolismo , Células Madre/metabolismo , Secuencia de Bases , Diferenciación Celular , Línea Celular , Inmunoprecipitación de Cromatina , Células Madre Embrionarias/metabolismo , Endodermo/metabolismo , Genes Reporteros , Proteínas de Homeodominio/metabolismo , Humanos , Luciferasas de Luciérnaga/biosíntesis , Luciferasas de Luciérnaga/genética , Proteína Homeótica Nanog , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Células Madre/citología
17.
Hepatology ; 51(5): 1754-65, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20301097

RESUMEN

UNLABELLED: Generation of hepatocytes from human embryonic stem cells (hESCs) could represent an advantageous source of cells for cell therapy approaches as an alternative to orthotopic liver transplantation. However, the generation of differentiated hepatocytes from hESCs remains a major challenge, especially using a method compatible with clinical applications. We report a novel approach to differentiate hESCs into functional hepatic cells using fully defined culture conditions, which recapitulate essential stages of liver development. hESCs were first differentiated into a homogenous population of endoderm cells using a combination of activin, fibroblast growth factor 2, and bone morphogenetic protein 4 together with phosphoinositide 3-kinase inhibition. The endoderm cells were then induced to differentiate further into hepatic progenitors using fibroblast growth factor 10, retinoic acid, and an inhibitor of activin/nodal receptor. After further maturation, these cells expressed markers of mature hepatocytes, including asialoglycoprotein receptor, tyrosine aminotransferase, alpha1-antitrypsin, Cyp7A1, and hepatic transcription factors such as hepatocyte nuclear factors 4alpha and 6. Furthermore, the cells generated under these conditions exhibited hepatic functions in vitro, including glycogen storage, cytochrome activity, and low-density lipoprotein uptake. After transduction with a green fluorescent protein-expressing lentivector and transplantation into immunodeficient uPA transgenic mice, differentiated cells engrafted into the liver, grew, and expressed human albumin and alpha1-antitrypsin as well as green fluorescent protein for at least 8 weeks. In addition, we showed that hepatic cells could be generated from human-induced pluripotent cells derived from reprogrammed fibroblasts, demonstrating the efficacy of this approach with pluripotent stem cells of diverse origins. CONCLUSION: We have developed a robust and efficient method to differentiate pluripotent stem cells into hepatic cells, which exhibit characteristics of human hepatocytes. Our approach should facilitate the development of clinical grade hepatocytes for transplantation and for research on drug discovery.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Hepatocitos/citología , Hígado/embriología , Activinas/farmacología , Animales , Benzamidas/farmacología , Proteína Morfogenética Ósea 4/farmacología , Diferenciación Celular/fisiología , Cromonas/farmacología , Dioxoles/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Morfolinas/farmacología , Células Madre Pluripotentes/citología , Tretinoina/farmacología
18.
Stem Cells ; 28(4): 743-52, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20201062

RESUMEN

Mouse embryonic pluripotent stem cells can be obtained from the inner cell mass at the blastocyst stage (embryonic stem cells, ESCs) or from the late epiblast of postimplantation embryos (epiblast stem cells, EpiSCs). During normal development, the transition between these two stages is marked by major epigenetic and transcriptional changes including DNA de novo methylation. These modifications represent an epigenetic mark conserved in ESCs and EpiSCs. Pluripotent ESCs derived from blastocysts generated by nuclear transfer (NT) have been shown to be correctly reprogrammed. However, NT embryos frequently undergo abnormal development. In the present study, we have examined whether pluripotent cells could be derived from the epiblast of postimplantation NT embryos and whether the reprogramming process would affect the epigenetic changes occurring at this stage, which could explain abnormal development of NT embryos. We showed that EpiSCs could be derived with the same efficiency from NT embryos and from their fertilized counterparts. However, gene expression profile analyses showed divergence between fertilized- and nuclear transfer-EpiSCs with a surprising bias in the distribution of the differentially expressed genes, 30% of them being localized on chromosome 11. A majority of these genes were downregulated in NT-EpiSCs and imprinted genes represented a significant fraction of them. Notably, analysis of the epigenetic status of a downregulated imprinted gene in NT-EpiSCs revealed complete methylation of the two alleles. Therefore, EpiSCs derived from NT embryos appear to be incorrectly reprogrammed, indicating that abnormal epigenetic marks are imposed on cells in NT embryos during the transition from early to late epiblast.


Asunto(s)
Estratos Germinativos/metabolismo , Células Madre/metabolismo , Animales , Biomarcadores , Línea Celular , Proliferación Celular , Forma de la Célula , Epigénesis Genética , Fertilización In Vitro , Perfilación de la Expresión Génica , Estratos Germinativos/citología , Ratones , Ratones Endogámicos C57BL , Técnicas de Transferencia Nuclear , Células Madre/citología
19.
Cell Stem Cell ; 28(5): 787-789, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33961759

RESUMEN

Recently in Cell, Tan et al. (2021) report the successful generation of human-monkey chimeras in vitro, providing an opportunity for new insights into the biology of human stem cells and early human development in an embryonic environment that is evolutionary closer to human than previously studied rodent and domestic species.


Asunto(s)
Quimera , Células Madre Pluripotentes , Animales , Haplorrinos , Humanos
20.
Stem Cell Reports ; 16(6): 1409-1415, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34048695

RESUMEN

The newly revised 2021 ISSCR Guidelines for Stem Cell Research and Clinical Translation includes scientific and ethical guidance for the transfer of human pluripotent stem cells and their direct derivatives into animal models. In this white paper, the ISSCR subcommittee that drafted these guidelines for research involving the use of nonhuman embryos and postnatal animals explains and summarizes their recommendations.


Asunto(s)
Quimera , Investigaciones con Embriones/ética , Células Madre Pluripotentes , Guías de Práctica Clínica como Asunto , Sociedades Científicas/normas , Investigación con Células Madre/ética , Trasplante de Células Madre/normas , Animales , Humanos , Sociedades Científicas/ética , Trasplante de Células Madre/ética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA