Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Molecules ; 29(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38542987

RESUMEN

The aim of the present study was to evaluate microwave-assisted (MAE) and pressurized liquid extraction (PLE) for the recovery of polyphenols from blackcurrant and bilberry leaves and the preservation of their antioxidant activity. The extractions were carried out varying the solvent/solid (SS) ratio, temperature and time. During MAE, increasing the SS ratio increased the polyphenol concentration in the extracts from blackcurrant and bilberry leaves, while increasing the temperature had a positive effect only on bilberry polyphenols. During PLE, only a temperature increase was a determining factor for the isolation of blackcurrant leave polyphenols. Based on polyphenol recovery, optimal extraction parameters were established resulting in a yield of 62.10 and 56.06 mg/g dw in the blackcurrant and bilberry MAE extracts and 78.90 and 70.55 mg/g dw in the PLE extracts. The optimized extracts were profiled by UPLC ESI MS2, and their antioxidant capacity was evaluated through FRAP, DPPH, ABTS and ORAC assays. The characterization of the extracts by UPLC ESI MS2 confirmed flavonols as the predominant compounds in both blackcurrant and bilberry leaves, while flavan-3-ols and procyanidins were the main compounds responsible for high antioxidant capacity as confirmed by the ABTS and ORAC assays. Due to the extract composition and antioxidant capacity, PLE proved to be a technique of choice for the production of blackcurrant and bilberry leave extracts with high potential for use as value-added ingredients in the food and nutraceutical industry.


Asunto(s)
Benzotiazoles , Polifenoles , Ácidos Sulfónicos , Vaccinium myrtillus , Polifenoles/química , Antioxidantes/química , Microondas , Solventes/química , Extractos Vegetales/química
2.
Molecules ; 27(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36014331

RESUMEN

Laurus nobilis L., known as laurel or bay leaf, is a Mediterranean plant which has been long known for exhibiting various health-beneficial effects that can largely be attributed to the polyphenolic content of the leaves. Pressurized liquid extraction (PLE) is a green extraction technique that enables the efficient isolation of polyphenols from different plant materials. Hence, the aim of this research was to determine optimal conditions for PLE (solvent, temperature, number of extraction cycles and static extraction time) of laurel leaf polyphenols and to assess the polyphenolic profile of the optimal extract by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) as well as to evaluate the antioxidant activity determined by FRAP, DPPH and ORAC assays. The optimal PLE conditions were 50% ethanol, 150 °C, one extraction cycle and 5 min static time. The polyphenolic extract obtained at optimal PLE conditions comprised 29 identified compounds, among which flavonols (rutin and quercetin-3-glucoside) were the most abundant. The results of antioxidant activity assays demonstrated that PLE is an efficient green technique for obtaining polyphenol-rich laurel leaf extracts with relatively high antioxidant activity.


Asunto(s)
Laurus , Polifenoles , Antioxidantes/química , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Laurus/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química , Espectrometría de Masas en Tándem
3.
Food Technol Biotechnol ; 60(4): 520-532, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36816880

RESUMEN

Research background: Recently, natural plant extracts have been used to increase the nutritional value of food and to potentially reduce the absorbed fat and the formation of acrylamide in fried foods. Literature data on the use of edible polymers with nettle or olive leaf extracts are scarce. Experimental approach: The effect of novel coatings on colour, fat absorption, phenolic and sugar content, and acrylamide formation in deep-fat-fried fresh-cut potatoes was evaluated. Extracts of olive and nettle leaves were incorporated in carboxymethyl cellulose (CMC) and gum arabic, used as coatings for potatoes and applied before frying. This aimed to improve the nutritional quality of deep-fat-fried fresh-cut potatoes. Results and conclusions: Enrichment of the edible coatings with extracts resulted in a significant change in the visible colour of the potatoes before frying. Significant effect of the extract amount on the sensory characteristics of potatoes was also observed. Most importantly, the perception of characteristic potato odour and taste was not significantly affected by the coating. Although higher amounts of the extract (1.5%) resulted in higher phenolic mass fraction in fried potatoes, the sensory scores decreased. After frying, fat mass fraction in the coated potatoes was reduced by about 15% compared to the uncoated samples. The type of extract affected the total sugar mass fraction in fried potatoes, which was lower in the samples with coatings enriched with olive leaf than in those with nettle leaf. Only gum arabic coating had a reducing effect on acrylamide mass fraction by 17%. Based on all the obtained results, CMC and gum arabic coatings did not influence sensory properties, so they can be recommended as carriers of functional compounds or as a frying pre-treatment for potatoes with favourable effect on fat and acrylamide content. Novelty and scientific contribution: The knowledge obtained in this study can be exploited for preparation of coatings with functional compounds used as a pre-treatment for fried food with favourable effect on fat and acrylamide content.

4.
Food Technol Biotechnol ; 60(2): 166-177, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35910275

RESUMEN

Research background: Potato tissue is damaged during fresh-cut production, which makes fresh-cut potato susceptible to the quality loss and microbiological spoilage. At the same time, such products are desirable due to their convenience; however, they are extremely sensitive and have short shelf life. The main challenge of the fresh-cut potato industry is to find possibilities to overcome these drawbacks. UV-C treatment, known for its antibacterial activity, is a promising technique and it shows a potential to improve shelf life of fresh-cut potato products. Experimental approach: The influence of the UV-C treatment on the safety and quality, as well as sensory traits of fresh-cut potato (Solanum tuberosum L. cv. Birgit) during storage was examined. For this purpose, 0-, 3-, 5- and 10-min UV-C irradiation was applied on vacuum-packed potato slices pretreated with sodium ascorbate solution. During 23 days of storage at (6±1) °C, microbiological, physicochemical and sensory properties of raw samples were monitored, along with sensory properties of boiled and fried fresh-cut potatoes. Results and conclusions: The 5- and 10-min UV-C treatments significantly reduced microbial growth, increased total solids and lightness (L*), and positively affected odour and firmness of raw potatoes. Cooked UV-C-treated samples were described with more pronounced characteristic potato odour and taste. Overall, UV-C-treated fresh-cut potato retained its good quality and sensory traits up to 15 days at (6±1) °C. Novelty and scientific contribution: To the best of our knowledge, this is the first scientific article dealing with the effect of UV-C light on durability (safety, quality and sensory traits) of fresh-cut potato cv. Birgit and its suitability for boiling and frying. In general, UV-C treatment is a known antimicrobial technique, but its application on fresh-cut potato is poorly explored. Results confirmed that vacuum-packed fresh-cut potato treated only with UV-C and sodium ascorbate as anti-browning agent, without the addition of chemical preservatives, had twofold longer shelf-life at (6±1) °C than the fresh-cut potato not treated with UV-C. Fresh-cut potato treated with UV-C retained good overall quality and sensory properties either raw, boiled or fried. Results of this study could also be useful for producers in terms of potential UV-C application as a strategy for prolonging the shelf-life of fresh-cut potato.

5.
Molecules ; 26(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34684733

RESUMEN

Nettle is a widely known plant whose high biological activity and beneficial medicinal effects are attributed to various bioactive compounds, among which polyphenols play an important role. In order to isolate polyphenols and preserve their properties, advanced extraction techniques have been applied to overcome the drawbacks of conventional ones. Therefore, microwave-assisted extraction (MAE) has been optimized for the isolation of nettle leaves polyphenols and it was compared to pressurized liquid extraction (PLE) and conventional heat-reflux extraction (CE). The obtained extracts were analyzed for their individual phenolic profile by UPLC MS2 and for their antioxidant capacity by ORAC assay. MAE proved to be the more specific technique for the isolation of individual phenolic compounds, while PLE produced extracts with higher amount of total phenols and higher antioxidant capacity. Both techniques were more effective compared to CE. PLE nettle extract showed antimicrobial activity against bacteria, especially against Gram-negative Pseudomonas fragi ATCC 4973 and Campylobacter jejuni NCTC 11168 strains. This suggests that PLE is suitable for obtaining a nettle extract with antioxidant and antimicrobial potential, which as such has great potential for use as a value-added ingredient in the food and pharmaceutical industry.


Asunto(s)
Fenoles/análisis , Fenoles/aislamiento & purificación , Urtica dioica/metabolismo , Antibacterianos/aislamiento & purificación , Antiinfecciosos/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Flavonoides/análisis , Microondas , Fenoles/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Hojas de la Planta/metabolismo
6.
Mar Drugs ; 18(3)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197494

RESUMEN

Over the years, brown algae bioactive polysaccharides laminarin, alginate and fucoidan have been isolated and used in functional foods, cosmeceutical and pharmaceutical industries. The extraction process of these polysaccharides includes several complex and time-consuming steps and the correct adjustment of extraction parameters (e.g., time, temperature, power, pressure, solvent and sample to solvent ratio) greatly influences the yield, physical, chemical and biochemical properties as well as their biological activities. This review includes the most recent conventional procedures for brown algae polysaccharides extraction along with advanced extraction techniques (microwave-assisted extraction, ultrasound assisted extraction, pressurized liquid extraction and enzymes assisted extraction) which can effectively improve extraction process. The influence of these extraction techniques and their individual parameters on yield, chemical structure and biological activities from the most current literature is discussed, along with their potential for commercial applications as bioactive compounds and drug delivery systems.


Asunto(s)
Phaeophyceae , Polisacáridos/química , Extracción en Fase Sólida , Humanos
7.
Molecules ; 25(24)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327473

RESUMEN

Pomegranate (Punica granatum L.) is a rich source of constituents with confirmed strong biological activities. However, pomegranate peel, which encompasses approximately 30-40% of its weight, is treated as a biological waste. The aim of this paper was to evaluate the potential of pomegranate peel extracts and to propose its functional properties that can be used for development of functional products. Eight ethanol extracts of pomegranate peels (PPEs) were characterized by use of direct infusion quadrupole-time of flight (Q-TOF), and afterwards tested on their antioxidant, antibacterial and antiproliferative activities. Mass spectrometry analysis revealed that the most prevalent compounds in pomegranate peels were punicalagin, granatin and their derivatives. Analysed extracts had high total phenolic contents that ranged from 5766.44 to 10599.43 mg GAE/100 g, and strong antioxidant activity (7551.31-7875.42 and 100.25-176.60 µmol TE/100 g for DPPH and FRAP assays, respectively). The results of biological activity assays showed that all PPEs possessed antibacterial activity, and that S. aureus was the most sensitive specie with minimum inhibitory concentration and minimum bactericidal concentrations ranging from 0.8 to 6.4 mg/mL. Additionally, the analysis of antiproliferative activity revealed high potency of PPEs, as the IC50 values ranged from 0.132 mg/mL to 0.396 mg/mL. Multivariate analysis pointed out the most discriminative metabolites for antioxidant or antiproliferative activity. Overall, the pomegranate peel confirmed to be a highly valuable source of bioactive compounds that could be used to improve the food functional characteristics.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/farmacología , Taninos Hidrolizables/farmacología , Fenoles/farmacología , Granada (Fruta)/química , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Compuestos de Bifenilo/antagonistas & inhibidores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Frutas/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/crecimiento & desarrollo , Humanos , Taninos Hidrolizables/química , Taninos Hidrolizables/aislamiento & purificación , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Fenoles/química , Fenoles/clasificación , Fenoles/aislamiento & purificación , Picratos/antagonistas & inhibidores , Extractos Vegetales/química , Análisis de Componente Principal , Residuos/análisis
8.
Food Technol Biotechnol ; 58(3): 303-314, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33281486

RESUMEN

RESEARCH BACKGROUND: Mastic tree (Pistacia lentiscus L.) of the Anacardiaceae family is an evergreen shrub from Mediterranean countries where it is used in traditional medicine. Analysis of P. lentiscus leaf, stem, fruit and root extracts showed high concentrations of principal groups of secondary metabolites (flavonoids, phenolic acids and tannins), suggesting the plant possesses great biological potential. Therefore, the aim of this research is to evaluate the impact of environmental parameters and the extraction solvent type on the concentration of phenols in mastic tree leaf extracts grown at four different locations along the Adriatic coast (Barbariga, Lun, Hvar and Vela Luka) during three phenological stages (early flowering, early fruiting and late fruiting). EXPERIMENTAL APPROACH: Since mastic tree plant has phenolic compounds with different structures and chemical properties, ethanolic and methanolic leaf extracts were analysed using high-performance liquid chromatography (HPLC) coupled with UV/Vis PDA detector. Phenolic compounds were identified by comparing the retention times and spectral data with those of standards at 280 and 340 nm. RESULTS AND CONCLUSIONS: In all samples, phenolic acids and flavonol glycosides were quantified, while catechin was quantified only in methanolic extracts. The 5-O-galloylquinic acid was determined as a predominant phenolic compound in all samples followed by monogalloyl glucose, 3,5-di-O-galloylquinic acid, 3,4,5-tri-O-galloylquinic acid and gallic acid, respectively. Myricetin-3-O-rhamnoside was found to be the predominant flavonol glycoside followed by myricetin-3-O-glucoside, myricetin-3-O-glucuronide, quercetin-3-O-rhamnoside and derivative of flavonol glycoside. The mass concentration of these compounds significantly varied during different phenological stages, at different growing locations and used extraction solvents. The highest phenolic mass concentration was determined in the samples harvested at Hvar growing location and extracted in 80% methanol. The highest total phenolic acid mass concentration was obtained in the samples harvested during the flowering phenological stage and the highest total flavonoid mass concentration in the samples harvested during the early fruiting stage. NOVELTY AND SCIENTIFIC CONTRIBUTION: The obtained data provide a better understanding of the P. lentiscus species phenolic concentration, which can lead to further investigations regarding the valorisation of mastic tree leaves as pharmaceutical products or as food products with added value.

9.
Plant Foods Hum Nutr ; 75(3): 427-433, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32572675

RESUMEN

In this paper, high-hydrostatic pressure extraction (HHPE) as an emerging food processing and preservation technique constitutes an alternative to conventional thermal treatment that has been used for extraction of polyphenols from tomato peel waste generated by the canning industry. The impact of time (5 and 10 min), temperature (25, 35, 45 and 55 °C) and solvents (water, 1% HCl, 50 and 70% methanol with and without addition of HCl, and 50 and 70% ethanol), at a constant pressure of 600 MPa, has been evaluated in this paper with respect to polyphenols' yields. The results showed a significant (p < 0.05) variation in the contents of a great number of phenolic compounds in respect of the applied temperatures and solvents. On the other hand, the time invested in HHPE had no effect on polyphenols' yields. Among phenolic compounds, the p-coumaric acid (p-CA) and chlorogenic acid derivative (ChA der) are predominant, i.e., 0.57 to 67.41 mg/kg and 1.29 to 58.57 mg/kg, respectively, depending on the solvents and temperatures used. In particular, methanol (50 and 70%) at temperatures of 45 and 55 °C enhanced the recovery of polyphenols in comparison to other utilised solvents. In conclusion, this paper puts forth the theory that by applying HHPE with minimal expenditure of time, it is possible to achieve efficient production of polyphenols from low-cost tomato peel waste, generating income both for producers and agri-food industries.


Asunto(s)
Polifenoles , Solanum lycopersicum , Antioxidantes , Cromatografía Líquida de Alta Presión , Presión Hidrostática , Extractos Vegetales , Solventes
10.
Molecules ; 24(5)2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30818836

RESUMEN

The focus of present study is on Codium bursa collected from the Adriatic Sea. C. bursa volatiles were identified by gas chromatography and mass spectrometry (GC-FID; GC-MS) after headspace solid-phase microextraction (HS-SPME), hydrodistillation (HD), and supercritical CO2 extraction (SC-CO2). The headspace composition of dried (HS-D) and fresh (HS-F) C. bursa was remarkably different. Dimethyl sulfide, the major HS-F compound was present in HS-D only as a minor constituent and heptadecane percentage was raised in HS-D. The distillate of fresh C. bursa contained heptadecane and docosane among the major compounds. After air-drying, a significantly different composition of the volatile oil was obtained with (E)-phytol as the predominant compound. It was also found in SC-CO2 extract of freeze-dried C. bursa (FD-CB) as the major constituent. Loliolide (3.51%) was only identified in SC-CO2 extract. Fatty acids were determined from FD-CB after derivatisation as methyl esters by GC-FID. The most dominant acids were palmitic (25.4%), oleic (36.5%), linoleic (11.6%), and stearic (9.0%). FD-CB H2O extract exhibited better antifungal effects against Fusarium spp., while dimethyl sulfoxide (DMSO) extract was better for the inhibition of Penicillium expansum, Aspergillus flavus, and Rhizophus spp. The extracts showed relatively good antifungal activity, especially against P. expansum (for DMSO extract MIC50 was at 50 µg/mL).


Asunto(s)
Antifúngicos/farmacología , Chlorophyta/química , Ácidos Grasos/farmacología , Hongos/efectos de los fármacos , Compuestos Orgánicos Volátiles/farmacología , Antifúngicos/análisis , Antifúngicos/aislamiento & purificación , Ácidos Grasos/análisis , Ácidos Grasos/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/aislamiento & purificación
11.
Molecules ; 23(8)2018 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-30126204

RESUMEN

Waste remaining after the production of olive oil (olive pomace) is known to contain significant amounts of phenolic compounds that exert different types of biological activities, primarily acting as antioxidants. In this work, a sustainable approach that combines ultrasound-assisted extraction with food-grade solvents and encapsulation with different types of cyclodextrins was used to prepare olive pomace-based polyphenol rich extracts that were tested as antioxidants in various chemical, food, and biological model systems. Encapsulation with cyclodextrins had a significant positive impact on the chemical composition of obtained extracts and it positively affected their antioxidant activity. Observed effects can be explained by an increased content of polyphenols in the formulations, specific physical properties of encapsulated compounds improving their antioxidant activity in complex food/physiological environment, and enhanced interaction with natural substrates. Depending on the applied model, the tested samples showed significant antioxidant protection in the concentration range 0.1⁻3%. Among the investigated cyclodextrins, hydroxypropyl-ß-cyclodextrin and randomly methylated-ß-cyclodextrin encapsulated extracts showed particularly good antioxidant activity and were especially potent in oil-in-water emulsion systems (1242 mg/g and 1422 mg/g of Trolox equivalents, respectively), showing significantly higher antioxidant activity than Trolox (reference antioxidant). In other models, they provided antioxidant protection comparable to commonly used synthetic antioxidants at concentration levels of 2⁻3%.


Asunto(s)
Antioxidantes/análisis , Antioxidantes/química , Suplementos Dietéticos , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Análisis de los Alimentos , Peroxidación de Lípido/efectos de los fármacos , Olea/química , Aceite de Oliva/análisis , Aceite de Oliva/química , Fenoles/análisis , Fosfatidiletanolaminas/química , Fitoquímicos/química , Extractos Vegetales/análisis , Extractos Vegetales/química , Extractos Vegetales/farmacología , Aceites de Plantas/análisis , Aceites de Plantas/química , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
12.
Food Technol Biotechnol ; 56(4): 590-596, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30923456

RESUMEN

The content of bioactive compounds and antioxidant activity were determined in Croatian domestic garlic after domestic processing (crushing, water blanching and frying) through different thermal treatments. The predominant phenolics in fresh garlic expressed per fresh mass were p-coumaric (10.79 mg/100 g) and caffeic (9.50 mg/100 g) acids, while the most abundant organosulfur compounds were methylsulfinylsulfanylmethane (9881.84 mg/100 g), 3-methylsulfinylsulfanylprop-1-ene and 3-methylsulfanylsulfinylprop-1-ene (257.59 mg/100 g) and allicin (185.62 mg/100 g). The highest total phenolic content and antioxidant activity were determined in fresh garlic followed by crushed, blanched and fried garlic, while organosulfur content increased after shorter thermal treatment. As time of treatment increased, frying showed the most pronounced losses of garlic total phenolic acids (in the range from 19.47 to 37.93%) and blanching of organosulfur content (about 25%). The blanching and frying significantly reduced allicin content, while S-methyl methanesulfinothioate was more stable.

13.
Food Technol Biotechnol ; 54(4): 441-449, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28115901

RESUMEN

Response surface methodology was applied for optimization of the sour cherry Marasca juice spray drying process with 20, 30 and 40% of carriers maltodextrin with dextrose equivalent (DE) value of 4-7 and 13-17 and gum arabic, at three drying temperatures: 150, 175 and 200 °C. Increase in carrier mass per volume ratio resulted in lower moisture content and powder hygroscopicity, higher bulk density, solubility and product yield. Higher temperatures decreased the moisture content and bulk density of powders. Temperature of 200 °C and 27% of maltodextrin with 4-7 DE were found to be the most suitable for production of sour cherry Marasca powder.

14.
Food Technol Biotechnol ; 54(1): 97-102, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27904398

RESUMEN

The present study compares the gastrointestinal stability of rosmarinic acid in aqueous extracts of thyme, winter savory and lemon balm with the stability of pure rosmarinic acid. The stability of rosmarinic acid was detected after two-phase in vitro digestion process (gastric and duodenal) with human gastrointestinal enzymes. The concentration of rosmarinic acid in undigested and digested samples was detected using HPLC-DAD. Results showed that gastrointestinal stability of pure rosmarinic acid was significantly higher than that of rosmarinic acid from plant extracts after both gastric and intestinal phases of digestion. Among plant extracts, rosmarinic acid was the most stable in lemon balm after gastric (14.10%) and intestinal digestion phases (6.5%). The temperature (37 °C) and slightly alkaline medium (pH=7.5) did not affect the stability of rosmarinic acid, while acid medium (pH=2.5) significantly decreased its stability (≥50%). In addition, the stability rate of rosmarinic acid is influenced by the concentration of human gastrointestinal juices.

15.
J Food Sci Technol ; 53(2): 1247-58, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27162405

RESUMEN

The aim of this study was to evaluate the influence of packaging materials and storage conditions on polyphenols stability, colour and sensory characteristics of freeze-dried sour cherry (Prunus cerasus var. Marasca). Freeze-dried sour cherries were packed in high barrier metalized polypropylene and aluminium packaging (PET/PPmet/PE and PET/Al/PE) for up to 12 months at 4, 20 and 37 °C. Characterisation of polyphenol compounds was done by HPLC UV/Vis PDA and in all samples individual anthocyanins (ANTs), flavonol-glycosides (FGs) and hydroxycinnamic acids (HCAs) were determined. Polyphenol content was not markedly affected by freeze-drying and decreases were amounted 1.5-5 %. Furthermore, obtained results indicated that minimal loss of polyphenol content in freeze dried sour cherries were achieved at 4 °C and 3 months of storage. Regardless of the type of packaging materials, samples stored at lower temperature during 12 months, retained the higher content of FGs (quercetin-3-glucoside, kaempferol-3-glucoside, kaempferol-3-rutinoside) and HCAs (neochlorogenic, chlorogenic, p-coumaric, caffeic and ferulic acid) than ANTs (cyanidin-3-glucosylrutinoside, cyanidin-3-rutinoside, cyanidin-3-glucoside, cyanidin-3-sophoroside). The same trend was confirmed with kinetic parameters, also. Sour cherry products packed in both type of laminate and stored at lower temperature retained characteristic dark red colour and sensory properties. This study showed that freeze-dried cherry products have pleasant sensory and very good nutritional properties, and storage in both type of laminates at 4 and 20 °C up to 6 months ensured good product quality.

16.
Foods ; 13(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998526

RESUMEN

Propolis has gained popularity in recent years as a potential preventive and therapeutic agent due to its numerous health benefits, which include immune system boosting, blood pressure lowering, allergy treatment, and skin disease treatment. The pharmacological activity of propolis is primarily attributed to phenolics and their interactions with other compounds. Given that phenols account for most of propolis's biological activity, various extraction methods are being developed. The resin-wax composition of the propolis matrix necessitates the development of an extraction procedure capable of breaking matrix-phenol bonds while maintaining phenol stability. Therefore, the aim of this study was to assess the stability of two major groups of phenolic compounds, flavonoids and phenolic acids, in propolis methanol/water 50/50 (v/v) extracts obtained after ultrasound-assisted extraction (USE) under different extraction parameters (extraction time and pH) and heat reflux extraction (HRE). The methodology involved varying the USE parameters, including extraction time (5, 10, and 15 min) and pH (2 and 7), followed by analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify phenolic recoveries. Results revealed that benzoic acid and chlorogenic acid derivatives demonstrated excellent stability across all ultrasound extraction procedures. The recoveries of flavonoids were highly diverse, with luteolin, quercitrin, and hesperetin being the most stable. Overall, neutral pH improved flavonoid recovery, whereas phenolic acids remained more stable at pH = 2. The most important optimization parameter was USE time, and it was discovered that 15 min of ultrasound resulted in the best recoveries for most of the phenols tested, implying that phenols bind strongly to the propolis matrix and require ultrasound to break the bond. However, the high variability in phenol extraction and recovery after spiking the propolis sample shows that no single extraction method can produce the highest yield of all phenols tested. As a result, when working with a complex matrix like propolis, the extraction techniques and procedures for each phenol need to be optimized.

17.
Carbohydr Polym ; 342: 122361, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048220

RESUMEN

Plasma technology as an advanced oxidation technology, has gained increasing interest to generate numerous chemically reactive species during the plasma discharge process. Such chemically reactive species can trigger a chain of chemical reactions leading to the degradation of macromolecules including polysaccharides. This review primarily summarizes the generation of various chemically reactive species during plasma treatment and their effects on the physico-chemical properties and biological activities of polysaccharides. During plasma treatment, the type of chemically reactive species that play a major role is related to equipment, working gases and types of polysaccharides. The primary chain structure of polysaccharides did not changed much during the plasma treatment, other physico-chemical properties might be changed, such as molecular weight, solubility, hydrophilicity, rheological properties, gel properties, crystallinity, elemental composition, glycosidic bonding, and surface morphology. Additionally, the biological activities of plasma-treated polysaccharides including antibacterial, antioxidant, immunological, antidiabetic activities, and seed germination promotion activities in agriculture could be improved. Therefore, plasma treatment has the potential application in preparing polysaccharides with enhanced biological activities.


Asunto(s)
Gases em Plasma , Polisacáridos , Polisacáridos/química , Polisacáridos/farmacología , Gases em Plasma/química , Antioxidantes/química , Antioxidantes/farmacología , Peso Molecular , Solubilidad , Antibacterianos/química , Antibacterianos/farmacología , Humanos
18.
Foods ; 13(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38397592

RESUMEN

This study investigated the potential of olive leaf extract (OLE), as a functional ingredient, to improve cheese properties, because it is rich in phenols. Milk and dairy products are poor in phenolic compounds. The main objective was to determine the most effective coagulation method and timing of OLE supplementation to maximize retention in the cheese matrix. Experimental cheeses were produced using the rennet and acid coagulation methods, with OLE added either directly to the cheese milk or to the curd phase. Three OLE effective concentrations corresponding to 25%, 50%, and 75% inhibition of DPPH reagent (EFC25, EFC50, and EFC75, respectively) were added, i.e., 11.5 mg GAE L-1, 16.6 mg GAE L-1, and 26.3 mg GAE L-1, respectively. The results showed that OLE significantly increased the concentration of total phenols, total flavonoids, and antioxidant activity in all cheese samples and in the residual whey, especially at higher effective concentrations (EFC 50 and EFC 75). Rennet-coagulated cheese to which OLE was added prior to coagulation (EM 25, EM 50, EM 75) exhibited higher hardness, gumminess, and chewiness but lower elasticity, suggesting alterations in the paracasein matrix. OLE did not adversely affect acidity, water activity, or cheese yield. However, higher EFC resulted in significant colour changes (∆E* > 3.0). In conclusion, the enrichment of cheesemaking milk with OLE and the application of the rennet coagulation method are the most suitable to optimise the production of OLE-enriched cheese. This research shows the potential to improve the nutritional value of cheese while maintaining its desired characteristics.

19.
Foods ; 12(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37444186

RESUMEN

The aim of this study was to evaluate the effect of spray-drying parameters on the physicochemical properties of encapsulated sea buckthorn berry oil. Different carriers (gum arabic, ß-cyclodextrin, and their mixture (1:1, w/w)), inlet air temperatures (120, 150, and 180 °C), and carrier-to-oil ratios (2, 3, and 4, w/w) were evaluated. The obtained powders were characterized in terms of the product yield (36.79-64.60%), encapsulation efficiency (73.08-93.18%), moisture content (0.23-3.70%), hygroscopicity (1.5-7.06 g/100 g), solubility (19.55-74.70%), bulk density (0.25-0.44 g/L), total carotenoid content (mg/100 g dm), and antioxidant capacity (871.83-1454.39 µmol TE/100 g dm). All physicochemical properties were significantly affected by the carrier-to-oil ratio and inlet air temperature. Higher carrier-to-oil ratios increased the product yield, encapsulation efficiency, solubility, and bulk density and decreased the powder hygroscopicity. Elevating the drying temperatures during spray drying also increased the product yield, encapsulation efficiency, and solubility, while it decreased the powder moisture content, total carotenoid content, and antioxidant capacity. Based on the physicochemical properties, the use of ß-cyclodextrin as a carrier, a drying temperature of 120 °C, and a carrier-to-oil ratio of 4 were selected as optimal conditions for the production of sea buckthorn berry oil powder. The obtained powder is a valuable material for a wide range of applications in the food and nutraceutical industries.

20.
Foods ; 12(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37174461

RESUMEN

Laurel (Laurus nobilis L.) leaves are a rich source of polyphenols with the potential for use in functional foods, where the main obstacle is their low stability and bioavailability, which can be improved by spray drying (SD). This research examined the influence of SD parameters, including inlet temperature (120, 150, and 180 °C), carrier type (ß-cyclodextrin (ß-CD); ß-CD + maltodextrin (MD) 50:50; ß-CD + gum arabic (GA) 50:50), and sample:carrier ratio (1:1, 1:2 and 1:3) on the physicochemical properties, encapsulation efficiency, polyphenolic profile, antioxidant capacity and bioaccessibility of laurel leaf polyphenols. The highest encapsulation efficiency was achieved at a sample:carrier ratio 1:2 and the temperature of 180 °C by using either of the applied carriers. However, the application of ß-CD + MD 50:50 ensured optimal solubility (55.10%), hygroscopicity (15.32%), and antioxidant capacity (ORAC 157.92 µmol Trolox equivalents per g of powder), while optimal moisture content (3.22%) was determined only by temperature, demanding conditions above 150 °C. A total of 29 polyphenols (dominantly flavonols) were identified in the obtained powders. SD encapsulation increased the bioaccessibility of laurel flavonols in comparison to the non-encapsulated extract by ~50% in the gastric and ~10% in the intestinal phase, especially for those powders produced with carrier mixtures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA