RESUMEN
AIM: Activation of both the Survivor Activating Factor Enhancement (SAFE) pathway (including Tumor Necrosis Factor-alpha (TNF-α) and Signal Transducer and Activator of Transcription-3 (STAT-3)) and the sphingolipid signalling pathway (including sphingosine kinase-1 (SK1) and sphingosine-1 phosphate (S1P)) play a key role in promoting cardioprotection against ischemia-reperfusion injury (IRI). We investigated whether the activation of the SAFE pathway by exogenous S1P is dependent on the activation of SK1 for cardioprotection. MATERIALS AND METHODS: Isolated cardiomyocytes from TNF-α knockout (KO) mice, cardiomyocyte-specific STAT-3 KO mice and their wild-type (WT) littermates were exposed to simulated ischemia in the presence of a trigger of the SAFE pathway (S1P) and SK1 inhibitor (SK1-I). Similarly, isolated perfused hearts from adult TNF-α KO, STAT-3 KO and WT mice were subjected to IRI with S1P and/or SK1-I. Cell viability, infarct size (IS) and SK1 activity were assessed. KEY FINDINGS: In isolated cardiomyocytes and in isolated hearts subjected to simulated ischemia/IRI, S1P pretreatment decreased cell death in WT mice, an effect that was abrogated in the presence of SK1-I. S1P failed to reduce cell death after simulated ischemia/IRI in both cardiomyocytes or hearts isolated from TNF-α KO and STAT-3 KO mice. Interestingly, S1P pretreatment increased SK1 activity in WT and STAT-3 KO mice, with no changes in TNF-α KO mice. SIGNIFICANCE: Our data strongly suggest SK1 as a key component to activate STAT-3 downstream of TNF-α in the SAFE pathway, paving the way for the development of novel cardioprotective strategies that may target SK1 to modulate the SAFE pathway and increase cell survival following IRI.
RESUMEN
Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) is a rare but life-threatening cutaneous drug reaction mediated by human leukocyte antigen (HLA) class I-restricted CD8+ T-cells. To obtain an unbiased assessment of SJS/TEN cellular immunopathogenesis, we performed single-cell (sc) transcriptome, surface proteome, and TCR sequencing on unaffected skin, affected skin, and blister fluid from 17 SJS/TEN patients. From 119,784 total cells, we identified 16 scRNA-defined subsets, confirmed by subset-defining surface protein expression. Keratinocytes upregulated HLA and IFN-response genes in the affected skin. Cytotoxic CD8+ T-cell subpopulations of expanded and unexpanded TCRαß clonotypes were shared in affected skin and blister fluid but absent or unexpanded in SJS/TEN unaffected skin. SJS/TEN blister fluid is a rich reservoir of oligoclonal CD8+ T-cells with an effector phenotype driving SJS/TEN pathogenesis. This multiomic database will act as the basis to define antigen-reactivity, HLA restriction, and signatures of drug-antigen-reactive T-cell clonotypes at a tissue level.
RESUMEN
Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) is a rare but life-threatening cutaneous drug reaction mediated by human leukocyte antigen (HLA) class I-restricted CD8+ T cells. For unbiased assessment of cellular immunopathogenesis, here we perform single-cell (sc) transcriptome, surface proteome, and T cell receptor (TCR) sequencing on unaffected skin, affected skin, and blister fluid from 15 SJS/TEN patients. From 109,888 cells, we identify 15 scRNA-defined subsets. Keratinocytes express markers indicating HLA class I-restricted antigen presentation and appear to trigger the proliferation of and killing by cytotoxic CD8+ tissue-resident T cells that express granulysin, granzyme B, perforin, LAG3, CD27, and LINC01871, and signal through the PKM, MIF, TGFß, and JAK-STAT pathways. In affected tissue, cytotoxic CD8+ T cells express private expanded and unexpanded TCRαß that are absent or unexpanded in unaffected skin, and mixed populations of macrophages and fibroblasts express pro-inflammatory markers or those favoring repair. This data identifies putative cytotoxic TCRs and therapeutic targets.
Asunto(s)
Linfocitos T CD8-positivos , Queratinocitos , Receptores de Antígenos de Linfocitos T , Análisis de la Célula Individual , Síndrome de Stevens-Johnson , Humanos , Síndrome de Stevens-Johnson/inmunología , Síndrome de Stevens-Johnson/genética , Análisis de la Célula Individual/métodos , Queratinocitos/inmunología , Queratinocitos/metabolismo , Linfocitos T CD8-positivos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Piel/inmunología , Piel/patología , Linfocitos T Citotóxicos/inmunología , Granzimas/metabolismo , Granzimas/genética , Transcriptoma , Masculino , Perforina/metabolismo , Perforina/genética , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Diferenciación de Linfocitos T/genética , Antígenos de Diferenciación de Linfocitos T/metabolismo , Antígenos de Diferenciación de Linfocitos T/inmunología , Macrófagos/inmunología , Macrófagos/metabolismoRESUMEN
Introduction: Drug Reaction with Eosinophilia Systemic Symptoms (DRESS) is more common in persons living with HIV (PLHIV), and first-line anti-TB drugs (FLTDs) and cotrimoxazole are the commonest offending drugs. Limited data is available on the skin infiltrating T-cell profile among DRESS patients with systemic CD4 T-cell depletion associated with HIV. Materials and methods: HIV cases with validated DRESS phenotypes (possible, probable, or definite) and confirmed reactions to either one or multiple FLTDs and/or cotrimoxazole were chosen (n = 14). These cases were matched against controls of HIV-negative patients who developed DRESS (n = 5). Immunohistochemistry assays were carried out with the following antibodies: CD3, CD4, CD8, CD45RO and FoxP3. Positive cells were normalized to the number of CD3+ cells present. Results: Skin infiltrating T-cells were mainly found in the dermis. Dermal and epidermal CD4+ T-cells (and CD4+/CD8+ ratios) were lower in HIV-positive vs. negative DRESS; p < 0.001 and p = 0.004, respectively; without correlation to whole blood CD4 cell counts. In contrast, no difference in dermal CD4+FoxP3+ T-cells was found in HIV-positive vs. negative DRESS, median (IQR) CD4+FoxP3+ T-cells: [10 (0-30) cells/mm2 vs. 4 (3-8) cells/mm2, p = 0.325]. HIV-positive DRESS patients reacting to more than one drug had no difference in CD8+ T-cell infiltrates, but higher epidermal and dermal CD4+FoxP3+ T-cell infiltrates compared to single drug reactors. Conclusion: DRESS, irrespective of HIV status, was associated with an increased skin infiltration of CD8+ T-cells, while CD4+ T-cells were lower in HIV-positive DRESS compared to HIV-negative DRESS skin. While inter-individual variation was high, the frequency of dermal CD4+FoxP3+ T-cells was higher in HIV-positive DRESS cases reacting to more than one drug. Further research is warranted to understand the clinical impact of these changes.
RESUMEN
Skin diseases are hallmarks of progressive HIV-related immunosuppression, with severe noninfectious inflammatory and hypersensitivity conditions as common as opportunistic infections. Conditions such as papular pruritic eruption are AIDS defining, whereas delayed immune-mediated adverse reactions, mostly cutaneous, occur up to 100-fold more during HIV infection. The skin, constantly in contact with the external environment, has a complex immunity. A dense, tightly junctioned barrier with basal keratinocytes and epidermal Langerhans cells with antimicrobial, innate-activating, and antigen-presenting functions form the frontline. Resident dermal dendritic, mast, macrophage, and innate lymphoid cells play pivotal roles in directing and polarizing appropriate adaptive immune responses and directing effector immune cell trafficking. Sustained viral replication leads to progressive declines in CD4 T cells, whereas Langerhans and dermal dendritic cells serve as viral reservoirs and points of first viral contact in the mucosa. Cutaneous cytokine responses and diminished lymphoid populations create a crucible for exaggerated inflammation and hypersensitivity. However, beyond histopathological description, these manifestations are poorly characterized. This review details normal skin immunology, changes associated with progressive HIV-related immunosuppression, and the characteristic conditions of immune dysregulation increased with HIV. We highlight the main research gaps and several novel tissue-directed strategies to define mechanisms that will provide targeted approaches to prevention or treatment.
Asunto(s)
Infecciones por VIH , Hipersensibilidad , Humanos , Inmunidad Innata , Piel/patología , Inflamación/patología , Linfocitos T CD4-Positivos , Hipersensibilidad/patologíaRESUMEN
Severe cutaneous adverse reactions related to first-line antituberculosis drugs are associated with high mortality and long-term morbidity. Oral sequential drug challenge, as a form of drug provocation testing, helps to salvage therapy by identifying culprit drugs but is associated with risk and is costly. IFN-γ enzyme-linked immune absorbent spot (ELISpot), an adjunctive in vitro diagnostic tool, may help to guide risk-stratification approaches. To determine the diagnostic accuracy of IFN-γ ELISpot against full-dose sequential drug challenge, we analyzed samples collected prospectively at multiple time points in 32 patients with first-line antituberculosis drugâassociated severe cutaneous adverse reaction (81% HIV infected, 25 with drug reaction with eosinophilia and systemic symptoms, and 7 with StevensâJohnson syndrome/toxic epidermal necrolysis). Sensitivity of IFN-γ ELISpot was 33% (4 of 12), 13% (1 of 8), 11% (1 of 9), and 0% (0 of 4) for rifampicin, isoniazid, pyrazinamide, and ethambutol, respectively (positivity threshold ≥50 spot forming units/million cells). Specificity was 100% for all the four drugs. Rifampicin IFN-γ ELISpot sensitivity increased to 58% (7 of 12) if a threshold of 20 spot forming units was used and to 75% (3 of 4) when restricted to samples <12 weeks after acute severe cutaneous adverse reaction event; specificity remained 100% for both. IFN-γ ELISpot offers adequate risk stratification of rifampicin severe cutaneous adverse reaction using acute samples and lowered threshold for positivity. Given the low sensitivity of IFN-γ ELISpot for other first-line antituberculosis drugs, additional optimization is needed to improve risk-stratification potential.
Asunto(s)
Infecciones por VIH , Síndrome de Stevens-Johnson , Humanos , Antituberculosos/efectos adversos , Isoniazida/efectos adversos , Rifampin/efectos adversos , Pirazinamida , Etambutol , Interferón gamma , Síndrome de Stevens-Johnson/diagnóstico , Síndrome de Stevens-Johnson/epidemiología , Síndrome de Stevens-Johnson/etiología , Infecciones por VIH/tratamiento farmacológicoRESUMEN
Whether adenosine, a crucial regulator of the developing cardiovascular system, can provoke arrhythmias in the embryonic/fetal heart remains controversial. Here, we aimed to establish a mechanistic basis of how an adenosinergic stimulation alters function of the developing heart. Spontaneously beating hearts or dissected atria and ventricle obtained from 4-day-old chick embryos were exposed to adenosine or specific agonists of the receptors A(1)AR (CCPA), A(2A)AR (CGS-21680) and A(3)AR (IB-MECA). Expression of the receptors was determined by quantitative PCR. The functional consequences of blockade of NADPH oxidase, extracellular signal-regulated kinase (ERK), phospholipase C (PLC), protein kinase C (PKC) and L-type calcium channel (LCC) in combination with adenosine or CCPA, were investigated in vitro by electrocardiography. Furthermore, the time-course of ERK phosphorylation was determined by western blotting. Expression of A(1)AR, A(2A)AR and A(2B)AR was higher in atria than in ventricle while A(3)AR was equally expressed. Adenosine (100µM) triggered transient atrial ectopy and second degree atrio-ventricular blocks (AVB) whereas CCPA induced mainly Mobitz type I AVB. Atrial rhythm and atrio-ventricular propagation fully recovered after 60min. These arrhythmias were prevented by the specific A(1)AR antagonist DPCPX. Adenosine and CCPA transiently increased ERK phosphorylation and induced arrhythmias in isolated atria but not in ventricle. By contrast, A(2A)AR and A(3)AR agonists had no effect. Interestingly, the proarrhythmic effect of A(1)AR stimulation was markedly reduced by inhibition of NADPH oxidase, ERK, PLC, PKC or LCC. Moreover, NADPH oxidase inhibition or antioxidant MPG prevented both A(1)AR-mediated arrhythmias and ERK phosphorylation. These results suggest that pacemaking and conduction disturbances are induced via A(1)AR through concomitant stimulation of NADPH oxidase and PLC, followed by downstream activation of ERK and PKC with LCC as possible target.
Asunto(s)
Arritmias Cardíacas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Corazón/embriología , NADPH Oxidasas/metabolismo , Proteína Quinasa C/metabolismo , Receptor de Adenosina A1/metabolismo , Transducción de Señal , Fosfolipasas de Tipo C/metabolismo , Adenosina/farmacología , Animales , Arritmias Cardíacas/genética , Canales de Calcio Tipo L/metabolismo , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Ratones , Modelos Biológicos , Fosforilación/efectos de los fármacos , ARN Mensajero/genética , Receptor de Adenosina A1/genéticaRESUMEN
Activation of the Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) pathway is known to play a key role in cardiogenesis and to afford cardioprotection against ischemia-reperfusion in adult. However, involvement of JAK2/STAT3 pathway and its interaction with other signaling pathways in developing heart transiently submitted to anoxia remains to be explored. Hearts isolated from 4-day-old chick embryos were submitted to anoxia (30 min) and reoxygenation (80 min) with or without the antioxidant MPG, the JAK2/STAT3 inhibitor AG490 or the PhosphoInositide-3-Kinase (PI3K)/Akt inhibitor LY-294002. Time course of phosphorylation of STAT3α(tyrosine705) and Reperfusion Injury Salvage Kinase (RISK) proteins [PI3K, Akt, Glycogen Synthase Kinase 3beta (GSK3beta), Extracellular signal-Regulated Kinase 2 (ERK2)] was determined in homogenate and in enriched nuclear and cytoplasmic fractions of the ventricle. STAT3 DNA-binding was determined. The chrono-, dromo- and inotropic disturbances were also investigated by electrocardiogram and mechanical recordings. Phosphorylation of STAT3α(tyr705) was increased by reoxygenation, reduced (~50%) by MPG or AG490 but not affected by LY-294002. STAT3 and GSK3beta were detected both in nuclear and cytoplasmic fractions while PI3K, Akt and ERK2 were restricted to cytoplasm. Reoxygenation led to nuclear accumulation of STAT3 but unexpectedly without DNA-binding. AG490 decreased the reoxygenation-induced phosphorylation of Akt and ERK2 and phosphorylation/inhibition of GSK3beta in the nucleus, exclusively. Inhibition of JAK2/STAT3 delayed recovery of atrial rate, worsened variability of cardiac cycle length and prolonged arrhythmias as compared to control hearts. Thus, besides its nuclear translocation without transcriptional activity, oxyradicals-activated STAT3α can rapidly interact with RISK proteins present in nucleus and cytoplasm, without dual interaction, and reduce the anoxia-reoxygenation-induced arrhythmias in the embryonic heart.
Asunto(s)
Citoplasma/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Animales , Embrión de Pollo , Ensayo de Cambio de Movilidad Electroforética , Glucógeno Sintasa Quinasa 3 beta , Immunoblotting , Daño por Reperfusión Miocárdica/embriología , Daño por Reperfusión Miocárdica/fisiopatología , Técnicas de Cultivo de Órganos , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Introduction: Ex vivo and in vitro diagnostics, such as interferon-γ (IFN-γ) release enzyme linked ImmunoSpot (ELISpot) and flow cytometry, are increasingly employed in the research and diagnostic setting for severe T-cell mediated hypersensitivity. Despite an increasing use of IFN-γ release ELISpot for drug causality assessment and utilization of a range of antimicrobial concentrations ex vivo, data regarding antimicrobial-associated cellular cytotoxicity and implications for assay performance remain scarcely described in the literature. Using the measurement of lactate dehydrogenase (LDH) and the 7-AAD cell viability staining, we aimed via an exploratory study, to determine the maximal antimicrobial concentrations required to preserve cell viability for commonly implicated antimicrobials in severe T-cell mediated hypersensitivity. Method: After an 18-h incubation of patient peripheral blood monocytes (PBMCs) and antimicrobials at varying drug concentrations, the cell cytotoxicity was measured in two ways. A colorimetric based assay that detects LDH activity and by flow cytometry using the 7-AAD cell viability staining. We used the PBMCs collected from three healthy control participants with no known history of adverse drug reaction and two patients with a rifampicin-associated drug reaction with eosinophilia and systemic symptoms (DRESS), confirmed on IFN-γ ELISpot assay. The PBMCs were stimulated for the investigated drugs at the previously published drug maximum concentration (Cmax), and concentrations 10- and 100-fold above. Results: In a human immunodeficiency virus (HIV) negative and a positive rifampicin-associated DRESS with positive ex vivo IFN-γ ELISpot assay, use of 10- and 100-fold Cmax drug concentrations decreased spot forming units/million cells by 32-100%, and this corresponded to cell cytotoxicity of more than 40 and 20% using an LDH assay and 7-AAD cell viability staining, respectively. The other antimicrobials (ceftriaxone, flucloxacillin, piperacillin/tazobactam, and isoniazid) tested in healthy controls showed similar dose-dependent increased cytotoxicity using the LDH assay, but cytotoxicity remained lower than 40% for all Cmax and 10-fold Cmax drug concentrations except flucloxacillin. All 100-fold Cmax concentrations resulted in cell death >40% (median 57%), except for isoniazid. 7-AAD cell viability staining also confirmed an increase in lymphocyte death in PBMCs incubated with 10-fold and 100-fold above Cmax for ceftriaxone, and flucloxacillin; however, piperacillin/tazobactam and isoniazid indicated no differences in percentages of viable lymphocytes across concentrations tested. Conclusion: The LDH cytotoxicity and 7-AAD cell viability staining techniques both demonstrate increased cell death corresponding to a loss in ELISpot sensitivity, with use of higher antimicrobial drug concentrations for ex vivo diagnostic IFN-γ ELISpot assays. For all the antimicrobials evaluated, the use of Cmax and 10-fold Cmax concentrations impacts cell viability and potentially affects ELISpot performance. These findings inform future approaches for ex vivo diagnostics such as IFN-γ release ELISpot.
RESUMEN
[This corrects the article DOI: 10.3389/fphar.2021.640012.].
RESUMEN
We have previously reported in the early septating embryonic heart that electromechanical disturbances induced by anoxia-reoxygenation are distinct in atria, ventricle, and outflow tract, and are attenuated in ventricle by opening of mitochondrial K(ATP) (mitoK(ATP)) channels. Here, we assessed the regional activation of mitogen-activated protein kinases (MAPKs) ERK, p38, and JNK in response to anoxia-reoxygenation and H(2)O(2). Hearts isolated from 4-day-old chick embryos were subjected to 30-min anoxia and 60-min reoxygenation or exposed to H(2)O(2) (50 microM-1 mM). The temporal pattern of activation of ERK, p38, and JNK in atria, ventricle, and outflow tract was determined using immunoblotting and/or kinase assay. The effect of the mitoK(ATP) channel opener diazoxide (50 microM) on JNK phosphorylation was also analyzed. Under basal conditions, total ERK and JNK were homogeneously distributed within the heart, whereas total p38 was the lowest in outflow tract. The phosphorylated/total form ratio of each MAPK was similar in all regions. Phosphorylation of ERK increased in atria and ventricle at the end of reoxygenation without change in outflow tract. Phosphorylation of p38 was augmented by anoxia in the three regions, and returned to basal level at the end of reoxygenation except in the outflow tract. JNK activity was not altered by anoxia-reoxygenation in atria and outflow tract. In ventricle, however, the diazoxide-inhibitable peak of JNK activity known to occur during reoxygenation was not accompanied by a change in phosphorylation level. H(2)O(2) over 500 microM impaired cardiac function, phosphorylated ERK in all the regions and p38 in atria and outflow tract, but did not affect JNK phosphorylation. At a critical stage of early cardiogenesis, anoxia, reoxygenation, exogenous H(2)O(2) and opening of mitoK(ATP) channels can subtly modulate ERK, p38, and JNK pathways in a region-specific manner.
Asunto(s)
Corazón/embriología , Peróxido de Hidrógeno/farmacología , Hipoxia/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Miocardio/enzimología , Estrés Oxidativo/efectos de los fármacos , Animales , Embrión de Pollo , Diazóxido/farmacología , Relación Dosis-Respuesta a Droga , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Corazón/efectos de los fármacos , Hipoxia/embriología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Fosforilación , Canales de Potasio/agonistas , Canales de Potasio/metabolismo , Factores de Tiempo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed in pacemaker cells very early during cardiogenesis. This work aimed at determining to what extent these channels are implicated in the electromechanical disturbances induced by a transient oxygen lack which may occur in utero. Spontaneously beating hearts or isolated ventricles and outflow tracts dissected from 4-day-old chick embryos were exposed to a selective inhibitor of HCN channels (ivabradine 0.1-10microM) to establish a dose-response relationship. The effects of ivabradine on electrocardiogram, excitation-contraction coupling and contractility of hearts submitted to anoxia (30min) and reoxygenation (60min) were also determined. The distribution of the predominant channel isoform, HCN4, was established in atria, ventricle and outflow tract by immunoblotting. Intrinsic beating rate of atria, ventricle and outflow tract was 164+/-22 (n=10), 78+/-24 (n=8) and 40+/-12bpm (n=23, mean+/-SD), respectively. In the whole heart, ivabradine (0.3microM) slowed the firing rate of atria by 16% and stabilized PR interval. These effects persisted throughout anoxia-reoxygenation, whereas the variations of QT duration, excitation-contraction coupling and contractility, as well as the types and duration of arrhythmias were not altered. Ivabradine (10microM) reduced the intrinsic rate of atria and isolated ventricle by 27% and 52%, respectively, whereas it abolished activity of the isolated outflow tract. Protein expression of HCN4 channels was higher in atria and ventricle than in the outflow tract. Thus, HCN channels are specifically distributed and control finely atrial, ventricular and outflow tract pacemakers as well as conduction in the embryonic heart under normoxia and throughout anoxia-reoxygenation.
Asunto(s)
Antiarrítmicos/farmacología , Arritmias Cardíacas/prevención & control , Benzazepinas/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/antagonistas & inhibidores , Sistema de Conducción Cardíaco/efectos de los fármacos , Corazón/efectos de los fármacos , Hipoxia/tratamiento farmacológico , Oxígeno/metabolismo , Animales , Arritmias Cardíacas/embriología , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Relojes Biológicos/efectos de los fármacos , Western Blotting , Embrión de Pollo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Electrocardiografía , Acoplamiento Excitación-Contracción/efectos de los fármacos , Corazón/embriología , Corazón/fisiopatología , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/metabolismo , Sistema de Conducción Cardíaco/embriología , Sistema de Conducción Cardíaco/metabolismo , Sistema de Conducción Cardíaco/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Hipoxia/embriología , Hipoxia/metabolismo , Hipoxia/fisiopatología , Ivabradina , Contracción Miocárdica/efectos de los fármacos , Canales de Potasio/metabolismo , Factores de Tiempo , Técnicas de Cultivo de TejidosRESUMEN
PURPOSE: High density lipoprotein (HDL) protects against myocardial infarction via mechanisms that remain unclear. STAT3 (signal transducer and activator of transcription 3) plays a key role in HDL-induced cardioprotection. In the heart, microRNAs (miRNAs) are involved in ischemia reperfusion injury. We therefore investigated whether the cardioprotective effect of HDL modulates miRNAs as a downstream target of STAT3 activation. METHODS: STAT3 cardiomyocyte deficient mice (STAT3-KO) and wildtype littermates (STAT3-WT) were submitted to left coronary ligature and reperfused (IR) with or without injection of HDL. Infarct size (IS) was determined and cardiac miRNA expression was evaluated after reperfusion in sham, IR and IR+HDL hearts by microarray analysis. In vitro, neonatal rat ventricular cardiomyocytes were submitted to hypoxia with or without HDL incubation. Cell viability and miRNA expression were analysed. RESULTS: In vivo, HDL reduced IS from 40.5±4.3% to 24.4±2.1% (p<0.05) in STAT3-WT mice. HDL failed to protect in STAT3-KO mice. In STAT3-WT mice, both miR-34b and miR-337 were increased in IR compared to sham and IR+HDL groups (p<0.05). These miRNAs were not modulated in STAT3-KO mice. In vitro, incubation with HDL improved cell viability against hypoxia (p<0.05). The expression of miR-34b and miR-337 was increased by hypoxia and reduced by HDL treatment (p<0.05). In cardiomyocytes transfected with miRNA mimics, HDL failed to improve cell viability against hypoxia. CONCLUSIONS: Our study, performed both in vivo and in vitro, delineates a novel cardioprotective signalling pathway activated by HDL, involving STAT3-mediated decrease of miR-34b and miR-337 expression.
Asunto(s)
MicroARNs/genética , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Factor de Transcripción STAT3/genética , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/farmacología , Ratones , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Fosforilación/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacosRESUMEN
The cholesterol concentrations of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) have traditionally served as risk factors for cardiovascular disease. As such, novel therapeutic interventions aiming to raise HDL cholesterol have been tested in the clinical setting. However, most trials led to a significant increase in HDL cholesterol with no improvement in cardiovascular events. The complexity of the HDL particle, which exerts multiple physiological functions and is comprised of a number of subclasses, has raised the question as to whether there should be more focus on HDL subclass and function rather than cholesterol quantity. We review current data regarding HDL subclasses and subclass-specific functionality and highlight how current lipid modifying drugs such as statins, cholesteryl ester transfer protein inhibitors, fibrates and niacin often increase cholesterol concentrations of specific HDL subclasses. In addition this review sets out arguments suggesting that the HDL3 subclass may provide better protective effects than HDL2.
RESUMEN
BACKGROUND: New evidence shows that high density lipoproteins (HDL) have protective effects beyond their role in reverse cholesterol transport. Reconstituted HDL (rHDL) offer an attractive means of clinically exploiting these novel effects including cardioprotection against ischemia reperfusion injury (IRI). However, basic rHDL composition is limited to apolipoprotein AI (apoAI) and phospholipids; addition of bioactive compound may enhance its beneficial effects. OBJECTIVE: The aim of this study was to investigate the role of rHDL in post-ischemic model, and to analyze the potential impact of sphingosine-1-phosphate (S1P) in rHDL formulations. METHODS AND RESULTS: The impact of HDL on IRI was investigated using complementary in vivo, ex vivo and in vitro IRI models. Acute post-ischemic treatment with native HDL significantly reduced infarct size and cell death in the ex vivo, isolated heart (Langendorff) model and the in vivo model (-48%, p<0.01). Treatment with rHDL of basic formulation (apoAI + phospholipids) had a non-significant impact on cell death in vitro and on the infarct size ex vivo and in vivo. In contrast, rHDL containing S1P had a highly significant, protective influence ex vivo, and in vivo (-50%, p<0.01). This impact was comparable with the effects observed with native HDL. Pro-survival signaling proteins, Akt, STAT3 and ERK1/2 were similarly activated by HDL and rHDL containing S1P both in vitro (isolated cardiomyocytes) and in vivo. CONCLUSION: HDL afford protection against IRI in a clinically relevant model (post-ischemia). rHDL is significantly protective if supplemented with S1P. The protective impact of HDL appears to target directly the cardiomyocyte.
Asunto(s)
Lipoproteínas HDL/farmacología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Animales , Apolipoproteína A-I/farmacología , Apolipoproteína A-I/uso terapéutico , Células Cultivadas , Lipoproteínas HDL/uso terapéutico , Lisofosfolípidos/farmacología , Lisofosfolípidos/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Factor de Transcripción STAT3/metabolismo , Esfingosina/análogos & derivados , Esfingosina/farmacología , Esfingosina/uso terapéuticoRESUMEN
AIM: Sphingosine-1-phosphate (S1P) is a cardioprotective agent. Signal transducer and activator of transcription 3 (STAT-3) is a key mediator of many cardioprotective agents. We aimed to explore whether STAT-3 is a key mediator in S1P-induced preconditioning. METHODS: Langendorff-perfused hearts from Wistar rats and wild-type or cardiomyocyte-specific STAT-3 knockout mice were pre-treated with S1P (10 nmol/l), with or without the STAT-3 pathway inhibitor AG490, before an ischaemia-reperfusion insult. Triphenyltetrazolium chloride and Evans blue staining were used for the determination of infarct size. Western blot analysis was carried out on the S1P pre-treated hearts for detection of cytosolic, nuclear and mitochondrial phosphorylated and total STAT-3 proteins. RESULTS: Pre-treatment with S1P decreased the infarct size in isolated rat (5 ± 3% vs control 26 ± 8%, p < 0.01) and wild-type mouse hearts (13 ± 1% vs control 33 ± 3%, p < 0.05). This protective effect was abolished in the rat hearts pre-treated with AG490 (30 ± 10%, p = ns vs control) and in the hearts from STAT-3 knockout mice (35 ± 4% vs control 30 ± 3%, p = ns). Levels of phosphorylated STAT-3 were significantly increased in both the nuclear (p < 0.05 vs control) and mitochondrial (p < 0.05 vs control) fractions in the S1P pre-treated hearts, but remained unchanged in the cytosolic fraction (p = ns vs control). CONCLUSION: These novel results demonstrate that pharmacological preconditioning with S1P in the isolated heart is mediated by activation of mitochondrial and nuclear STAT-3, therefore suggesting that S1P may be a novel therapeutic target to modulate mitochondrial and nuclear function in cardiovascular disease in order to protect the heart against ischaemia-reperfusion.
Asunto(s)
Cardiotónicos/uso terapéutico , Lisofosfolípidos/farmacología , Infarto del Miocardio/tratamiento farmacológico , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Esfingosina/análogos & derivados , Tirfostinos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Precondicionamiento Isquémico Miocárdico , Masculino , Ratones , Ratones Noqueados , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Ratas Wistar , Esfingosina/farmacologíaRESUMEN
OBJECTIVE: High density lipoproteins (HDL) protect against ischemia reperfusion injury (IRI). However the precise mechanisms are not clearly understood. The novel intrinsic prosurvival signaling pathway named survivor activating factor enhancement (SAFE) path involves the activation of tumor necrosis factor (TNF) alpha and signal transducer and activator of transcription 3 (STAT3). SAFE plays a crucial role in cardioprotection against IRI. We propose that HDL protect against IRI via activation of the SAFE pathway and modulation of the mitochondrial permeability transition pore (mPTP) opening. METHODS AND RESULTS: Isolated mouse hearts were subjected to global ischemia (35 min) followed by reperfusion (45 min). HDL were given during the first 7 min of reperfusion. In control hearts, the post-reperfusion infarct size was 41.3 ± 2.3%. Addition of HDL during reperfusion reduced the infarct size in a dose-dependent manner (HDL 200 µg protein/ml: 25.5 ± 1.6%, p < 0.001 vs. control). This protective effect was absent in TNF deficient mice (TNF-KO) or cardiomyocyte-STAT3 deficient mice (STAT3-KO). Similarly, HDL, given as a preconditioning stimulus, improved cell survival and inhibited mPTP opening in isolated cardiomyocytes subjected to simulated ischemia. These protective responses were inhibited in cardiomyocytes from TNF-KO and STAT3-KO mice. CONCLUSION: Our data demonstrate that HDL protect against IRI by inhibition of mPTP opening, an effect mediated via activation of the SAFE pathway.
Asunto(s)
HDL-Colesterol/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Animales , Supervivencia Celular/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación/fisiología , Factor de Transcripción STAT3/genética , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/genéticaRESUMEN
High density lipoprotein (HDL) cholesterol has beneficial effects beyond its atheroprotective function in reverse cholesterol transport, including cardioprotection against ischemia reperfusion (IR) injuries. Two major constituents of HDL, namely the structural protein apolipoprotein AI (apoAI) and the sphingolipid sphingosine-1-phosphate (S1P) appear to contribute to this cardioprotective effect via the activation of intrinsic prosurvival signaling pathways that still remain to be clarified. Recently, a powerful prosurvival signaling pathway, termed the survivor activating factor enhancement (SAFE) pathway, which involves the activation of signal transducer and activator of transcription 3 (STAT3) and tumor necrosis factor α (TNF), has been shown to protect against ischemia-reperfusion injuries. The present review summarizes the evidence for the roles of HDL and S1P in cardioprotection and discusses the signaling pathways that have been implicated. It thus provides support for our contention that S1P should be considered in potential formulations of reconstituted HDL (reHDL) that may be tested for cardioprotection against coronary artery disease via the activation of the SAFE pathway.