Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 120(13): 135002, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29694164

RESUMEN

A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high performance DIII-D tokamak plasma discharges. These LCOs are localized and composed of density turbulence, gradient drives, and E×B velocity shear damping (E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E×B velocity shear. Reported here for the first time is a unique spatiotemporal variation of the local E×B velocity, which is found to be essential for the existence of this system. The LCO system is quasistationary, existing from 3 to 12 plasma energy confinement times (∼30-900 LCO cycles) limited by hardware constraints. This plasma system appears to contribute strongly to the edge transport in these high performance and transient-free plasmas, as evident from oscillations in transport relevant edge parameters at LCO time scale.

2.
Phys Rev Lett ; 116(21): 215001, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27284662

RESUMEN

We report the first observation of localized modulation of turbulent density fluctuations n[over ˜] (via beam emission spectroscopy) by neoclassical tearing modes (NTMs) in the core of the DIII-D tokamak. NTMs are important as they often lead to severe degradation of plasma confinement and disruptions in high-confinement fusion experiments. Magnetic islands associated with NTMs significantly modify the profiles and turbulence drives. In this experiment n[over ˜] was found to be modulated by 14% across the island. Gyrokinetic simulations suggest that n[over ˜] could be dominantly driven by the ion temperature gradient instability.

3.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39109900

RESUMEN

To validate nonlinear gyrokinetic simulations of electron temperature turbulence, the experimental correlation electron cyclotron emission (CECE) measurements are to be compared using a synthetic CECE diagnostic, which generates modeled CECE measurement quantities by implementing realistic measurement parameters (e.g., spatial and wavenumber resolutions, radial location, etc.) to nonlinear gyrokinetic simulations. In this work, we calculate the radial and vertical spatial and wavenumber transfer functions, which are defined by the electron cyclotron emission emissivity radial profile and vertical probing antenna pattern, respectively. These transfer functions are applied to nonlinear gyrokinetic simulations of electron temperature turbulence using the continuum gyrokinetic code. A simultaneous comparison of the experimental electron temperature turbulence power spectrum and root-mean-square (RMS) level, as well as the radial correlation length with the new synthetic CECE diagnostic at a core location ρ ∼ 0.75 in an L-mode DIII-D tokamak plasma, is presented. The preliminary result shows that the synthetic CECE output underestimates the RMS level by ∼42% and overestimates the radial correlation length by ∼40%.

4.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39101788

RESUMEN

We present the design and laboratory tests for a new Q-band frequency tunable Doppler backscattering (DBS) system suitable for probing poloidal wavenumber kñ = 6-8 cm-1 density fluctuations and their flow velocities in the pedestal and scape-off layer (SOL) of the DIII-D tokamak. This system will provide new measurements in the increasingly important and under-diagnosed far pedestal and SOL plasma regions. These results are important for experimental transport studies and necessary for the validation of transport models, both of which are important to fusion energy research. The use of a single tunable frequency reduces the complexity and potential failure points as compared to a multichannel system. This new system utilizes a 33-50 GHz tunable source and will be integrated into the current V-band DBS in DIII-D using a broadband Q- and V-band multiplexer. A full-scale mockup of the quasi-optical system was used to test and optimize the performance. These tests include beam profile measurements at different distances (and angles) from a paraboloidal focusing and steering mirror. The measurements cover the full frequency range 33-75 GHz of the integrated/combined Q-V band DBS system and target a large radial coverage of the low-field side of the plasma from ρ = 1.1 to ρ = 0.5, where ρ is the normalized flux surface radial coordinate.

5.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39136651

RESUMEN

A set of new millimeter-wave diagnostics will deliver unique measurement capabilities for National Spherical Torus Experiment-Upgrade to address a variety of plasma instabilities believed to be important in determining thermal and particle transport, such as micro-tearing, global Alfvén eigenmodes, kinetic ballooning, trapped electron, and electron temperature gradient modes. These diagnostics include a new integrated intermediate-k Doppler backscattering (DBS) and cross-polarization scattering (CPS) system (four channels, 82.5-87 GHz) to measure density and magnetic fluctuations, respectively. The system can access reasonably large normalized wavenumbers kθρs ranging from ≤0.5 to 15 (where ion sound gyroradius ρs = 1 cm and kθ is the binormal density turbulence wavenumber). The system addresses the challenges for making useful DBS/CPS measurements with a remote control of launch polarization (X- or O-mode), probed wavenumber, polarization match of the launch beam with the edge magnetic field pitch angle, and beam steering of the launched beam for wave-vector alignment. In addition, a low-k DBS system consisting of eight fixed frequencies (34-52 GHz) and four tunable frequencies (55-75 GHz) for low-k density turbulence and fast ion physics will be located at a nearby port location. The combined systems cover the near LCFS and pedestal regions (34-52 GHz), the pedestal or mid-radius (50-75 GHz), and core plasmas (82.5-87 GHz).

6.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39140813

RESUMEN

Validated and accurate edge profiles (temperature, density, etc.) are vitally important to the Mega Ampere Spherical Tokamak Upgrade (MAST-U) divertor and confinement effort. Density profile reflectometry has the potential to significantly add to the measurement capabilities currently available on MAST-U (e.g., Thomson scattering and Langmuir probes). This work presents the diagnostic requirements, problems, and solutions facing profile reflectometry in spherical tokamaks and MAST-U in particular. Requirements include density measurements near zero electron density in the scrape off layer region, coverage for a broad range of MAST-U plasma parameters, high time (≤10 microseconds) and spatial resolutions (≤1 cm), reliability, and identification of the plasma start frequency.

7.
Phys Rev Lett ; 110(4): 045003, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-25166172

RESUMEN

A critical gradient threshold has been observed for the first time in a systematic, controlled experiment for a locally measured turbulent quantity in the core of a confined high-temperature plasma. In an experiment in the DIII-D tokamak where L(T(e))(-1) = |∇T(e)|/T(e) and toroidal rotation were varied, long wavelength (k(θ)ρ(s) ≲ 0.4) electron temperature fluctuations exhibit a threshold in L(T(e))(-1): below, they change little; above, they steadily increase. The increase in δT(e)/T(e) is concurrent with increased electron heat flux and transport stiffness. Observations were insensitive to rotation. Accumulated evidence strongly enforces the identification of the experimentally observed threshold with ∇T(e)-driven trapped electron mode turbulence.

8.
Rev Sci Instrum ; 94(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37493501

RESUMEN

A novel quadrature Doppler Backscattering (DBS) system has been developed and optimized for the E-band (60-90 GHz) frequency range using either O-mode or X-mode polarization in DIII-D plasmas. In general, DBS measures the amplitude of density fluctuations and their velocity in the lab frame. The system can simultaneously monitor both low-frequency turbulence (f < 10 MHz) and radiofrequency plasma density fluctuations over a selectable frequency range (20-500 MHz). Detection of high-frequency fluctuations has been demonstrated for low harmonics of the ion cyclotron frequency (e.g., 2fci ∼ 23 MHz) and externally driven high-frequency helicon waves (f = 476 MHz) using an adjustable frequency down conversion system. Importantly, this extends the application of DBS to a high-frequency spectral domain while maintaining important turbulence and flow measurement capabilities. This unique system has low phase noise, good temporal resolution (sub-millisecond), and excellent wavenumber coverage (kθ ∼ 1-20 cm-1 and kr ≲ 30 cm-1). As a demonstration, localized internal DIII-D plasma measurements are presented from turbulence (f ≤ 5 MHz), Alfvenic waves (f ∼ 6.5 MHz), ion cyclotron waves (f ≥ 20 MHz), as well as fluctuations around 476 MHz driven by an external high-power 476 MHz helicon wave antenna. In the future, helicon measurements will be used to validate GENRAY and AORSA modeling tools for prediction of helicon wave propagation, absorption, and current drive location for the newly installed helicon current drive system on DIII-D.

9.
Phys Rev Lett ; 108(15): 155002, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22587261

RESUMEN

Direct evidence of zonal flow (ZF) predator-prey oscillations and the synergistic roles of ZF- and equilibrium E×B flow shear in triggering the low- to high-confinement (L- to H-mode) transition in the DIII-D tokamak is presented. Periodic turbulence suppression is first observed in a narrow layer at and just inside the separatrix when the shearing rate transiently exceeds the turbulence decorrelation rate. The final transition to H mode with sustained turbulence and transport reduction is controlled by equilibrium E×B shear due to the increasing ion pressure gradient.

10.
Rev Sci Instrum ; 93(11): 113511, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461495

RESUMEN

The radial correlation length (Lr) is one of the essential quantities to measure in order to more fully characterize and understand turbulence and anomalous transport in magnetic fusion plasmas. The analysis method for calculating Lr of electron temperature (Te) turbulence from correlation electron cyclotron emission (correlation ECE or CECE) radiometer measurements has not been fully developed partly due to the fact that the turbulent electron temperature fluctuations are generally imbedded in much larger amplitude thermal noise, which leads to a greatly reduced cross correlation coefficient (ϱ) between two spatially separated ECE signals. This work finds that this ϱ reduction factor due to thermal noise is a function of the local relative temperature fluctuation power and CECE system bandwidths of intermediate and video frequencies, independent of radial separations. This indicates that under the approximation of constant relative temperature fluctuation power for a small radial range of local CECE measurements, the original shape of ϱ as a function of radial separation without thermal noise is preserved in the CECE data with thermal noise present. For Te turbulence with a Gaussian radial wavenumber spectrum, a fit function using the product of Gaussian and sinusoidal functions is derived for calculating Lr. This analysis method has been numerically tested using simulated ECE radiometer data over a range of parameters. Using this method, the experimental temperature turbulence correlation length Lr in a DIII-D L-mode plasma is found to be ∼10 times the local ion gyroradius.

11.
Rev Sci Instrum ; 93(11): 113549, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461471

RESUMEN

A new Doppler backscattering (DBS) system has been installed and tested on the MAST-U spherical tokamak. It utilizes eight simultaneous fixed frequency probe beams (32.5, 35, 37.5, 40, 42.5, 45, 47.5, and 50 GHz). These frequencies provide a range of radial positions from the edge plasma to the core depending on plasma conditions. The system utilizes a combination of novel features to provide remote control of the probed density wavenumber, the launched polarization (X vs O-mode), and the angle of the launched DBS to match the magnetic field pitch angle. The range of accessible density turbulence wavenumbers (kθ) is reasonably large with normalized wavenumbers kθρs ranging from ≤0.5 to 9 (ion sound gyroradius ρs = 1 cm). This wavenumber range is relevant to a variety of instabilities believed to be important in establishing plasma transport (e.g., ion temperature gradient, trapped electron, electron temperature gradient, micro-tearing, kinetic ballooning modes). The system is specifically designed to address the requirement of density fluctuation wavevector alignment which can significantly reduce the SNR if not accounted for.

12.
Rev Sci Instrum ; 93(10): 103536, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319398

RESUMEN

We use the beam model of Doppler backscattering (DBS), which was previously derived from beam tracing and the reciprocity theorem, to shed light on mismatch attenuation. This attenuation of the backscattered signal occurs when the wavevector of the probe beam's electric field is not in the plane perpendicular to the magnetic field. Correcting for this effect is important for determining the amplitude of the actual density fluctuations. Previous preliminary comparisons between the model and Mega-Ampere Spherical Tokamak (MAST) plasmas were promising. In this work, we quantitatively account for this effect on DIII-D, a conventional tokamak. We compare the predicted and measured mismatch attenuation in various DIII-D, MAST, and MAST-U plasmas, showing that the beam model is applicable in a wide variety of situations. Finally, we performed a preliminary parameter sweep and found that the mismatch tolerance can be improved by optimizing the probe beam's width and curvature at launch. This is potentially a design consideration for new DBS systems.

13.
Rev Sci Instrum ; 92(4): 043523, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243388

RESUMEN

Turbulent electron temperature fluctuation measurement using a correlation electron cyclotron emission (CECE) radiometer has become an important diagnostic for studying energy transport in fusion plasmas, and its use is widespread in tokamaks (DIII-D, ASDEX Upgrade, Alcator C-Mod, Tore Supra, EAST, TCV, HL-2A, etc.). The CECE diagnostic typically performs correlation analysis between two closely spaced (within the turbulent correlation length) ECE channels that are dominated by uncorrelated thermal noise emission. This allows electron temperature fluctuations embedded in the thermal noise to be revealed and fluctuation level and spectra determined. We have demonstrated a new, improved CECE coherency-based analysis for calculating the temperature fluctuation frequency spectrum and level, which has been verified both numerically through the simulation of synthetic ECE radiometer data and through analysis of experimental data from the CECE system on DIII-D. The new formulation places coherency-based analysis on a firm foundational footing and corrects some currently published methodologies. This new method accurately accounts for bias error in the coherence function and correctly calculates noise levels for a fixed data record length. It provides excellent accuracy in determining temperature fluctuation level (e.g., <10% error) even for a small realization number in the ensemble average. The method also has a smaller uncertainty (i.e., error bar) in the power spectrum when compared to the more standard cross-power method when evaluated at low coherency. Direct calculation of system noise level using correlation between randomized intermediate frequency signals is recommended.

14.
Rev Sci Instrum ; 92(4): 043550, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243375

RESUMEN

New capabilities of fast-sweep frequency-modulated profile reflectometry are explored to measure electron density ne perturbation magnitudes and radial profiles due to plasma coherent modes in DIII-D. The first approach is based on the frequency analysis of phase perturbations associated with high frequency (∼MHz) Alfvén eigenmodes (AEs). The measurement of ∼5.5 MHz fast-ion-driven global Alfvén eigenmodes (GAEs) is demonstrated in a neutral beam-heated DIII-D plasma. The GAE induced a broad radial distribution of phase perturbations in the profile reflectometer data. Analysis of these data determined the effective cutoff location displacement and the estimated ne fluctuation profile. In the second approach, high resolution ne profiles are used directly to determine the radial structure of ne perturbations due to a neo-classical tearing mode. These new measurements broaden the application of profile reflectometry and advance the development of AE spectroscopy as a tool for non-invasive diagnosis of fast-ion-driven modes in DIII-D and burning plasmas such as ITER.

15.
Rev Sci Instrum ; 92(6): 063505, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243511

RESUMEN

A combined Doppler backscattering/cross-polarization scattering (DBS/CPS) system is being deployed on MAST-U for simultaneous measurements of local density turbulence, turbulence flows, and magnetic turbulence. In this design, CPS shares the probing beam with the DBS and uses a separate parallel-viewing receiver system. In this study, we utilize a modified GENRAY 3D ray-tracing code to simulate the propagation of the probing and scattered beams. The contributions of different scattering locations along the entire beam trajectories are considered, and the corresponding local B̃ wavenumbers are estimated using the wavevector matching criterion. The wavenumber ranges of the local B̃ that are detectable to the CPS system are explored for simulated L- and H-mode plasmas.

16.
Rev Sci Instrum ; 92(3): 033524, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33820017

RESUMEN

Final design studies in preparation for manufacturing have been performed for functional components of the vacuum portion of the ITER Low-Field Side Reflectometer (LFSR). These components consist of an antenna array, electron cyclotron heating (ECH) protection mirrors, phase calibration mirrors, and vacuum windows. Evaluation of these components was conducted at the LFSR test facility and DIII-D. The antenna array consists of six corrugated-waveguide antennas for simultaneous profile, fluctuation, and Doppler measurements. A diffraction grating, incorporated into the plasma-facing miter bend, provides protection of sensitive components from stray ECH at 170 GHz. For in situ phase calibration of the LFSR profile reflectometer, an embossed mirror is incorporated into the adjacent miter bend. Measurements of the radiated beam profile indicate that these components have a small, acceptable effect on mode conversion and beam quality. Baseline transmission characteristics of the dual-disk vacuum window are obtained and are used to guide ongoing developments. Preliminary simulations indicate that a surface-relief structure on the window surfaces can greatly improve transmission. The workability of real-time phase measurements was demonstrated on the DIII-D profile reflectometer. The new automated real-time analysis agrees well with the standard post-processing routine.

17.
Rev Sci Instrum ; 89(10): 10H106, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399653

RESUMEN

In this paper, we address the challenging question of measuring turbulence levels on the high magnetic field side (HFS) of tokamak plasmas. Although turbulence measurements on the HFS can provide a stringent constraint for the turbulence model validation, to date only low magnetic field side (LFS) measured turbulence has been used in validation studies. To address this issue, an eight channel Correlation Electron Cyclotron Emission (CECE) system at DIII-D was modified to probe both LFS and HFS. In contrast to the second harmonic extraordinary mode electron cyclotron resonance emission that is typically used in CECE, we show that it is possible to probe the HFS using fundamental O-mode electron cyclotron resonance emission. The required hardware modifications for the HFS measurements are presented here, and the potential issues in this measurement are discussed.

18.
Rev Sci Instrum ; 89(10): 10H107, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399735

RESUMEN

Simulations and laboratory tests are used to design and optimize a quasi-optical system for cross-polarization scattering (CPS) measurements of magnetic turbulence on the DIII-D tokamak. The CPS technique uses a process where magnetic turbulence scatters electromagnetic radiation into the perpendicular polarization enabling a local measurement of the perturbing magnetic fluctuations. This is a challenging measurement that addresses the contribution of magnetic turbulence to anomalous thermal transport in fusion research relevant plasmas. The goal of the new quasi-optical design is to demonstrate the full spatial and wavenumber capabilities of the CPS diagnostic. The approach used consists of independently controlled and in vacuo aiming systems for the probe and scattered beams (55-75 GHz).

19.
Rev Sci Instrum ; 89(10): 10H113, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399840

RESUMEN

Cross-polarization scattering (CPS) provides localized magnetic fluctuation ( B ̃ ) measurements in fusion plasmas based on the process where B ̃ scatters electromagnetic radiation into the orthogonal polarization. The CPS system on DIII-D utilizes the probe beam of a Doppler backscattering (DBS) diagnostic combined with a cross-view CPS receiver system, which allows simultaneous density and B ̃ measurements with good spatial and wavenumber coverage. The interpretation of the signals is challenging due to the complex plasma propagation of the DBS probe beam and CPS receive beams. A synthetic diagnostic for CPS is therefore essential to interpret data and perform detailed validation tests of non-linear turbulence simulations. This work reports a first step toward a synthetic diagnostic for CPS utilizing GENRAY, a 3-D ray tracing code, to simulate the propagation of the probe and scattered rays. The local B ̃ wavenumber is calculated from the local O- and X-mode wavenumbers using the wave vector matching scattering condition. The CPS wavenumber values and spatial locations are determined by a complex consideration that includes the local density and B ̃ level, receive antenna pattern and orientation, scattering volume, wavenumber values detected at the various scattering centers, and alignment of the magnetic wave vector with the plane perpendicular to the magnetic field. The issue of a spurious CPS signal due to polarization mismatches for launch and receive is also discussed. It is suggested that simultaneous O- and X-mode DBS measurements should be utilized for better understanding of the CPS signal contamination when the cutoff locations for both polarizations are close.

20.
Rev Sci Instrum ; 89(10): 10H112, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399744

RESUMEN

Real-time phase calibration of the ITER profile reflectometer is essential due to the long plasma duration and expected waveguide path length changes during a discharge. Progress has been recently made in addressing this issue by employing a phase calibration technique on DIII-D that monitors calibration variations that occur during each plasma discharge. By installing a thin free-standing metallic wire (1 mm diameter) near the end of the overmoded waveguide transmission system (oriented perpendicular to the waveguide axis), the round-trip phase shift from the wire is detected simultaneously with the plasma phase shifts. Variations in the reflectometer round trip path length (∼26 m) are then calculated after each DIII-D plasma discharge, allowing the calibration phase to be accurately monitored and updated. The round-trip reflectometer path length is observed to vary by ∼3 mm (root mean square value) during a typical DIII-D discharge. Using the variations in calibration phase, the density profile measurement accuracy can be improved. Since the wire retro-reflected power is ∼0.01 of the plasma signal, minimal effect is observed on the reflected signal from the plasma. Importantly, through a suitable choice in wire diameter, the calibration signal can be made approximately independent of the V-band reflectometer launch polarization. This is particularly important on DIII-D since orthogonal X- and O-mode polarized beams are coupled into the same transmission waveguide and launch antenna.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA