Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(41): e2220403120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37796985

RESUMEN

As SARS-CoV-2 variants of concern (VoCs) that evade immunity continue to emerge, next-generation adaptable COVID-19 vaccines which protect the respiratory tract and provide broader, more effective, and durable protection are urgently needed. Here, we have developed one such approach, a highly efficacious, intranasally delivered, trivalent measles-mumps-SARS-CoV-2 spike (S) protein (MMS) vaccine candidate that induces robust systemic and mucosal immunity with broad protection. This vaccine candidate is based on three components of the MMR vaccine, a measles virus Edmonston and the two mumps virus strains [Jeryl Lynn 1 (JL1) and JL2] that are known to provide safe, effective, and long-lasting protective immunity. The six proline-stabilized prefusion S protein (preS-6P) genes for ancestral SARS-CoV-2 WA1 and two important SARS-CoV-2 VoCs (Delta and Omicron BA.1) were each inserted into one of these three viruses which were then combined into a trivalent "MMS" candidate vaccine. Intranasal immunization of MMS in IFNAR1-/- mice induced a strong SARS-CoV-2-specific serum IgG response, cross-variant neutralizing antibodies, mucosal IgA, and systemic and tissue-resident T cells. Immunization of golden Syrian hamsters with MMS vaccine induced similarly high levels of antibodies that efficiently neutralized SARS-CoV-2 VoCs and provided broad and complete protection against challenge with any of these VoCs. This MMS vaccine is an efficacious, broadly protective next-generation COVID-19 vaccine candidate, which is readily adaptable to new variants, built on a platform with a 50-y safety record that also protects against measles and mumps.


Asunto(s)
COVID-19 , Sarampión , Paperas , Cricetinae , Animales , Humanos , Ratones , SARS-CoV-2/genética , Vacunas contra la COVID-19 , COVID-19/prevención & control , Vacuna contra el Sarampión-Parotiditis-Rubéola , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , Inmunoglobulina G , Mesocricetus , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus/genética
2.
Proc Natl Acad Sci U S A ; 120(52): e2318710120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109523

RESUMEN

Recent studies have characterized various mouse antigen-presenting cells (APCs) expressing the lymphoid-lineage transcription factor RORγt (Retinoid-related orphan receptor gamma t), which exhibit distinct phenotypic features and are implicated in the induction of peripheral regulatory T cells (Tregs) and immune tolerance to microbiota and self-antigens. These APCs encompass Janus cells and Thetis cell subsets, some of which express the AutoImmune REgulator (AIRE). RORγt+ MHCII+ type 3 innate lymphoid cells (ILC3) have also been implicated in the instruction of microbiota-specific Tregs. While RORγt+ APCs have been actively investigated in mice, the identity and function of these cell subsets in humans remain elusive. Herein, we identify a rare subset of RORγt+ cells with dendritic cell (DC) features through integrated single-cell RNA sequencing and single-cell ATAC sequencing. These cells, which we term RORγt+ DC-like cells (R-DC-like), exhibit DC morphology, express the MHC class II machinery, and are distinct from all previously reported DC and ILC3 subsets, but share transcriptional and epigenetic similarities with DC2 and ILC3. We have developed procedures to isolate and expand them in vitro, enabling their functional characterization. R-DC-like cells proliferate in vitro, continue to express RORγt, and differentiate into CD1c+ DC2-like cells. They stimulate the proliferation of allogeneic T cells. The identification of human R-DC-like cells with proliferative potential and plasticity toward CD1c+ DC2-like cells will prompt further investigation into their impact on immune homeostasis, inflammation, and autoimmunity.


Asunto(s)
Inmunidad Innata , Linfocitos , Humanos , Ratones , Animales , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Inflamación/metabolismo , Células Dendríticas
3.
PLoS Pathog ; 19(2): e1011193, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36821596

RESUMEN

Traditionally, whooping cough or pertussis caused by the obligate human pathogen Bordetella pertussis (Bp) is described as an acute disease with severe symptoms. However, many individuals who contract pertussis are either asymptomatic or show very mild symptoms and yet can serve as carriers and sources of bacterial transmission. Biofilms are an important survival mechanism for bacteria in human infections and disease. However, bacterial determinants that drive biofilm formation in humans are ill-defined. In the current study, we show that Bp infection of well-differentiated primary human bronchial epithelial cells leads to formation of bacterial aggregates, clusters, and highly structured biofilms which are colocalized with cilia. These findings mimic observations from pathological analyses of tissues from pertussis patients. Distinct arrangements (mono-, bi-, and tri-partite) of the polysaccharide Bps, extracellular DNA, and bacterial cells were visualized, suggesting complex heterogeneity in bacteria-matrix interactions. Analyses of mutant biofilms revealed positive roles in matrix production, cell cluster formation, and biofilm maturity for three critical Bp virulence factors: Bps, filamentous hemagglutinin, and adenylate cyclase toxin. Adherence assays identified Bps as a new Bp adhesin for primary human airway cells. Taken together, our results demonstrate the multi-factorial nature of the biofilm extracellular matrix and biofilm development process under conditions mimicking the human respiratory tract and highlight the importance of model systems resembling the natural host environment to investigate pathogenesis and potential therapeutic strategies.


Asunto(s)
Bordetella pertussis , Tos Ferina , Humanos , Bordetella pertussis/genética , Tos Ferina/microbiología , Biopelículas , Epitelio , Sistema Respiratorio
4.
EMBO Rep ; 24(4): e56660, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36880581

RESUMEN

Interferon-induced transmembrane protein 3 (IFITM3) is an antiviral protein that alters cell membranes to block fusion of viruses. Conflicting reports identified opposing effects of IFITM3 on SARS-CoV-2 infection of cells, and its impact on viral pathogenesis in vivo remains unclear. Here, we show that IFITM3 knockout (KO) mice infected with SARS-CoV-2 experience extreme weight loss and lethality compared to mild infection in wild-type (WT) mice. KO mice have higher lung viral titers and increases in inflammatory cytokine levels, immune cell infiltration, and histopathology. Mechanistically, we observe disseminated viral antigen staining throughout the lung and pulmonary vasculature in KO mice, as well as increased heart infection, indicating that IFITM3 constrains dissemination of SARS-CoV-2. Global transcriptomic analysis of infected lungs shows upregulation of gene signatures associated with interferons, inflammation, and angiogenesis in KO versus WT animals, highlighting changes in lung gene expression programs that precede severe lung pathology and fatality. Our results establish IFITM3 KO mice as a new animal model for studying severe SARS-CoV-2 infection and overall demonstrate that IFITM3 is protective in SARS-CoV-2 infections in vivo.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , COVID-19/genética , Interferones/genética , Pulmón , Ratones Noqueados
5.
J Immunol ; 210(9): 1257-1271, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36881867

RESUMEN

Vaccines against SARS-CoV-2 that induce mucosal immunity capable of preventing infection and disease remain urgently needed. In this study, we demonstrate the efficacy of Bordetella colonization factor A (BcfA), a novel bacteria-derived protein adjuvant, in SARS-CoV-2 spike-based prime-pull immunizations. We show that i.m. priming of mice with an aluminum hydroxide- and BcfA-adjuvanted spike subunit vaccine, followed by a BcfA-adjuvanted mucosal booster, generated Th17-polarized CD4+ tissue-resident memory T cells and neutralizing Abs. Immunization with this heterologous vaccine prevented weight loss following challenge with mouse-adapted SARS-CoV-2 (MA10) and reduced viral replication in the respiratory tract. Histopathology showed a strong leukocyte and polymorphonuclear cell infiltrate without epithelial damage in mice immunized with BcfA-containing vaccines. Importantly, neutralizing Abs and tissue-resident memory T cells were maintained until 3 mo postbooster. Viral load in the nose of mice challenged with the MA10 virus at this time point was significantly reduced compared with naive challenged mice and mice immunized with an aluminum hydroxide-adjuvanted vaccine. We show that vaccines adjuvanted with alum and BcfA, delivered through a heterologous prime-pull regimen, provide sustained protection against SARS-CoV-2 infection.


Asunto(s)
Hidróxido de Aluminio , COVID-19 , Humanos , Animales , Ratones , Inmunidad Mucosa , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2 , Inmunización , Adyuvantes Inmunológicos , Anticuerpos Antivirales , Anticuerpos Neutralizantes
6.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34937699

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus responsible for the global COVID-19 pandemic. Herein, we provide evidence that SARS-CoV-2 spreads through cell-cell contact in cultures, mediated by the spike glycoprotein. SARS-CoV-2 spike is more efficient in facilitating cell-to-cell transmission than is SARS-CoV spike, which reflects, in part, their differential cell-cell fusion activity. Interestingly, treatment of cocultured cells with endosomal entry inhibitors impairs cell-to-cell transmission, implicating endosomal membrane fusion as an underlying mechanism. Compared with cell-free infection, cell-to-cell transmission of SARS-CoV-2 is refractory to inhibition by neutralizing antibody or convalescent sera of COVID-19 patients. While angiotensin-converting enzyme 2 enhances cell-to-cell transmission, we find that it is not absolutely required. Notably, despite differences in cell-free infectivity, the authentic variants of concern (VOCs) B.1.1.7 (alpha) and B.1.351 (beta) have similar cell-to-cell transmission capability. Moreover, B.1.351 is more resistant to neutralization by vaccinee sera in cell-free infection, whereas B.1.1.7 is more resistant to inhibition by vaccinee sera in cell-to-cell transmission. Overall, our study reveals critical features of SARS-CoV-2 spike-mediated cell-to-cell transmission, with important implications for a better understanding of SARS-CoV-2 spread and pathogenesis.


Asunto(s)
COVID-19/inmunología , COVID-19/transmisión , SARS-CoV-2/inmunología , Internalización del Virus , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales , COVID-19/terapia , Fusión Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Inmunización Pasiva , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero , Sueroterapia para COVID-19
7.
Proc Natl Acad Sci U S A ; 119(33): e2201616119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35895717

RESUMEN

With the rapid increase in SARS-CoV-2 cases in children, a safe and effective vaccine for this population is urgently needed. The MMR (measles/mumps/rubella) vaccine has been one of the safest and most effective human vaccines used in infants and children since the 1960s. Here, we developed live attenuated recombinant mumps virus (rMuV)-based SARS-CoV-2 vaccine candidates using the MuV Jeryl Lynn (JL2) vaccine strain backbone. The soluble prefusion SARS-CoV-2 spike protein (preS) gene, stablized by two prolines (preS-2P) or six prolines (preS-6P), was inserted into the MuV genome at the P-M or F-SH gene junctions in the MuV genome. preS-6P was more efficiently expressed than preS-2P, and preS-6P expression from the P-M gene junction was more efficient than from the F-SH gene junction. In mice, the rMuV-preS-6P vaccine was more immunogenic than the rMuV-preS-2P vaccine, eliciting stronger neutralizing antibodies and mucosal immunity. Sera raised in response to the rMuV-preS-6P vaccine neutralized SARS-CoV-2 variants of concern, including the Delta variant equivalently. Intranasal and/or subcutaneous immunization of IFNAR1-/- mice and golden Syrian hamsters with the rMuV-preS-6P vaccine induced high levels of neutralizing antibodies, mucosal immunoglobulin A antibody, and T cell immune responses, and were completely protected from challenge by both SARS-CoV-2 USA-WA1/2020 and Delta variants. Therefore, rMuV-preS-6P is a highly promising COVID-19 vaccine candidate, warranting further development as a tetravalent MMR vaccine, which may include protection against SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacuna contra el Sarampión-Parotiditis-Rubéola , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Eficacia de las Vacunas , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Inmunogenicidad Vacunal , Vacuna contra el Sarampión-Parotiditis-Rubéola/genética , Vacuna contra el Sarampión-Parotiditis-Rubéola/inmunología , Mesocricetus , Ratones , Virus de la Parotiditis/genética , Virus de la Parotiditis/inmunología , Prolina/genética , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología
8.
Proc Natl Acad Sci U S A ; 119(35): e2110105119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994646

RESUMEN

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main target for neutralizing antibodies (NAbs). The S protein trimer is anchored in the virion membrane in its prefusion (preS) but metastable form. The preS protein has been stabilized by introducing two or six proline substitutions, to generate stabilized, soluble 2P or HexaPro (6P) preS proteins. Currently, it is not known which form is the most immunogenic. Here, we generated recombinant vesicular stomatitis virus (rVSV) expressing preS-2P, preS-HexaPro, and native full-length S, and compared their immunogenicity in mice and hamsters. The rVSV-preS-HexaPro produced and secreted significantly more preS protein compared to rVSV-preS-2P. Importantly, rVSV-preS-HexaPro triggered significantly more preS-specific serum IgG antibody than rVSV-preS-2P in both mice and hamsters. Antibodies induced by preS-HexaPro neutralized the B.1.1.7, B.1.351, P.1, B.1.427, and B.1.617.2 variants approximately two to four times better than those induced by preS-2P. Furthermore, preS-HexaPro induced a more robust Th1-biased cellular immune response than preS-2P. A single dose (104 pfu) immunization with rVSV-preS-HexaPro and rVSV-preS-2P provided complete protection against challenge with mouse-adapted SARS-CoV-2 and B.1.617.2 variant, whereas rVSV-S only conferred partial protection. When the immunization dose was lowered to 103 pfu, rVSV-preS-HexaPro induced two- to sixfold higher antibody responses than rVSV-preS-2P in hamsters. In addition, rVSV-preS-HexaPro conferred 70% protection against lung infection whereas only 30% protection was observed in the rVSV-preS-2P. Collectively, our data demonstrate that both preS-2P and preS-HexaPro are highly efficacious but preS-HexaPro is more immunogenic and protective, highlighting the advantages of using preS-HexaPro in the next generation of SARS-CoV-2 vaccines.


Asunto(s)
Prolina , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Desarrollo de Vacunas , Estomatitis Vesicular , Vacunas Virales , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/genética , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Cricetinae , Humanos , Ratones , Prolina/inmunología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Estomatitis Vesicular/inmunología , Estomatitis Vesicular/prevención & control , Estomatitis Vesicular/virología , Vesiculovirus/inmunología , Proteínas Virales/inmunología , Vacunas Virales/inmunología
9.
Proc Natl Acad Sci U S A ; 119(42): e2123338119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36240321

RESUMEN

5-methylcytosine (m5C) is one of the most prevalent modifications of RNA, playing important roles in RNA metabolism, nuclear export, and translation. However, the potential role of RNA m5C methylation in innate immunity remains elusive. Here, we show that depletion of NSUN2, an m5C methyltransferase, significantly inhibits the replication and gene expression of a wide range of RNA and DNA viruses. Notably, we found that this antiviral effect is largely driven by an enhanced type I interferon (IFN) response. The antiviral signaling pathway is dependent on the cytosolic RNA sensor RIG-I but not MDA5. Transcriptome-wide mapping of m5C following NSUN2 depletion in human A549 cells revealed a marked reduction in the m5C methylation of several abundant noncoding RNAs (ncRNAs). However, m5C methylation of viral RNA was not noticeably altered by NSUN2 depletion. In NSUN2-depleted cells, the host RNA polymerase (Pol) III transcribed ncRNAs, in particular RPPH1 and 7SL RNAs, were substantially up-regulated, leading to an increase of unshielded 7SL RNA in cytoplasm, which served as a direct ligand for the RIG-I-mediated IFN response. In NSUN2-depleted cells, inhibition of Pol III transcription or silencing of RPPH1 and 7SL RNA dampened IFN signaling, partially rescuing viral replication and gene expression. Finally, depletion of NSUN2 in an ex vivo human lung model and a mouse model inhibits viral replication and reduces pathogenesis, which is accompanied by enhanced type I IFN responses. Collectively, our data demonstrate that RNA m5C methylation controls antiviral innate immunity through modulating the m5C methylome of ncRNAs and their expression.


Asunto(s)
Interferón Tipo I , Virosis , 5-Metilcitosina/metabolismo , Animales , Antivirales , Proteína 58 DEAD Box/metabolismo , Humanos , Inmunidad Innata/genética , Interferón Tipo I/genética , Interferones , Ligandos , Ratones , ARN Polimerasa III , Replicación Viral/genética
10.
Proc Natl Acad Sci U S A ; 119(21): e2202012119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35588457

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS­CoV-2) is a worldwide health concern, and new treatment strategies are needed. Targeting inflammatory innate immunity pathways holds therapeutic promise, but effective molecular targets remain elusive. Here, we show that human caspase-4 (CASP4) and its mouse homolog, caspase-11 (CASP11), are up-regulated in SARS­CoV-2 infections and that CASP4 expression correlates with severity of SARS­CoV-2 infection in humans. SARS­CoV-2­infected Casp11−/− mice were protected from severe weight loss and lung pathology, including blood vessel damage, compared to wild-type (WT) mice and mice lacking the caspase downstream effector gasdermin-D (Gsdmd−/−). Notably, viral titers were similar regardless of CASP11 knockout. Global transcriptomics of SARS­CoV-2­infected WT, Casp11−/−, and Gsdmd−/− lungs identified restrained expression of inflammatory molecules and altered neutrophil gene signatures in Casp11−/− mice. We confirmed that protein levels of inflammatory mediators interleukin (IL)-1ß, IL-6, and CXCL1, as well as neutrophil functions, were reduced in Casp11−/− lungs. Additionally, Casp11−/− lungs accumulated less von Willebrand factor, a marker for endothelial damage, but expressed more Kruppel-Like Factor 2, a transcription factor that maintains vascular integrity. Overall, our results demonstrate that CASP4/11 promotes detrimental SARS­CoV-2­induced inflammation and coagulopathy, largely independently of GSDMD, identifying CASP4/11 as a promising drug target for treatment and prevention of severe COVID-19.


Asunto(s)
COVID-19 , Caspasas Iniciadoras/metabolismo , SARS-CoV-2 , Tromboinflamación , Animales , COVID-19/enzimología , COVID-19/patología , Caspasas Iniciadoras/genética , Progresión de la Enfermedad , Humanos , Pulmón/patología , Ratones , Ratones Noqueados , Índice de Severidad de la Enfermedad , Tromboinflamación/enzimología , Tromboinflamación/genética
11.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33688034

RESUMEN

The current pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights an urgent need to develop a safe, efficacious, and durable vaccine. Using a measles virus (rMeV) vaccine strain as the backbone, we developed a series of recombinant attenuated vaccine candidates expressing various forms of the SARS-CoV-2 spike (S) protein and its receptor binding domain (RBD) and evaluated their efficacy in cotton rat, IFNAR-/-mice, IFNAR-/--hCD46 mice, and golden Syrian hamsters. We found that rMeV expressing stabilized prefusion S protein (rMeV-preS) was more potent in inducing SARS-CoV-2-specific neutralizing antibodies than rMeV expressing full-length S protein (rMeV-S), while the rMeVs expressing different lengths of RBD (rMeV-RBD) were the least potent. Animals immunized with rMeV-preS produced higher levels of neutralizing antibody than found in convalescent sera from COVID-19 patients and a strong Th1-biased T cell response. The rMeV-preS also provided complete protection of hamsters from challenge with SARS-CoV-2, preventing replication in lungs and nasal turbinates, body weight loss, cytokine storm, and lung pathology. These data demonstrate that rMeV-preS is a safe and highly efficacious vaccine candidate, supporting its further development as a SARS-CoV-2 vaccine.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Vectores Genéticos , Virus del Sarampión , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/complicaciones , COVID-19/patología , Vacunas contra la COVID-19/genética , Cricetinae , Modelos Animales de Enfermedad , Expresión Génica , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Humanos , Inmunización , Inmunogenicidad Vacunal , Virus del Sarampión/genética , Virus del Sarampión/inmunología , Ratones , Ratones Transgénicos , Ratas , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Sintéticas/genética
12.
PLoS Pathog ; 17(4): e1009469, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33831114

RESUMEN

Respiratory syncytial virus (RSV) infects the upper and lower respiratory tracts and can cause lower respiratory tract infections in children and elders. RSV has traditionally been isolated, grown, studied and quantified in immortalized cell lines, most frequently HEp-2 cells. However, in vivo RSV infection is modeled more accurately in primary well differentiated human bronchial epithelial (HBE) cultures where RSV targets the ciliated cells and where the putative RSV receptor differs from the receptor on HEp-2 cells. The RSV attachment (G) glycoprotein in virions produced by HEp-2 cells is a highly glycosylated 95 kDa protein with a 32 kDa peptide core. However, virions produced in HBE cultures, RSV (HBE), contain an even larger, 170 kDa, G protein (LgG). Here we show that LgG is found in virions from both subgroups A and B lab-adapted and clinical isolates. Unexpectedly, RSV (HBE) virions were approximately 100-fold more infectious for HBE cultures than for HEp-2 cells. Surprisingly, the cause of this differential infectivity, was reduced infectivity of RSV (HBE) on HEp-2 cells rather than enhanced infectivity on HBE cultures. The lower infectivity of RSV(HBE) for HEp-2 cells is caused by the reduced ability of LgG to interact with heparan sulfate proteoglycans (HSPG), the RSV receptor on HEp-2 cells. The discovery of different infectivity corresponding with the larger form of the RSV attachment protein when produced by HBE cultures highlights the importance of studying a virus produced by its native host cell and the potential impact on quantifying virus infectivity on cell lines where the virus entry mechanisms differ from their natural target cell.


Asunto(s)
Glicoproteínas/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/patogenicidad , Infecciones del Sistema Respiratorio/virología , Bronquios/virología , Línea Celular , Células Epiteliales/virología , Genes Reporteros , Glicoproteínas/genética , Humanos , Cultivo Primario de Células , Proteínas Recombinantes , Virus Sincitial Respiratorio Humano/genética , Internalización del Virus
13.
PLoS Pathog ; 17(12): e1010142, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34929018

RESUMEN

Human respiratory syncytial virus (RSV) is the leading cause of respiratory tract infections in humans. A well-known challenge in the development of a live attenuated RSV vaccine is that interferon (IFN)-mediated antiviral responses are strongly suppressed by RSV nonstructural proteins which, in turn, dampens the subsequent adaptive immune responses. Here, we discovered a novel strategy to enhance innate and adaptive immunity to RSV infection. Specifically, we found that recombinant RSVs deficient in viral RNA N6-methyladenosine (m6A) and RSV grown in m6A methyltransferase (METTL3)-knockdown cells induce higher expression of RIG-I, bind more efficiently to RIG-I, and enhance RIG-I ubiquitination and IRF3 phosphorylation compared to wild-type virion RNA, leading to enhanced type I IFN production. Importantly, these m6A-deficient RSV mutants also induce a stronger IFN response in vivo, are significantly attenuated, induce higher neutralizing antibody and T cell immune responses in mice and provide complete protection against RSV challenge in cotton rats. Collectively, our results demonstrate that inhibition of RSV RNA m6A methylation enhances innate immune responses which in turn promote adaptive immunity.


Asunto(s)
Adenosina/análogos & derivados , ARN Viral , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Inmunidad Adaptativa , Animales , Inmunidad Innata , Metilación , Ratones , Ratas
14.
J Med Virol ; 95(4): e28687, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36941778

RESUMEN

Measles virus (MeV) has been an excellent vector platform for delivering vaccines against many pathogens because of its high safety and efficacy, and induction of long-lived immunity. Early in the COVID-19 pandemic, a recombinant MeV (rMeV) expressing the prefusion full-length spike protein stabilized by two prolines (TMV-083) was developed and tested in phase 1 and 1/2 clinical trials but was discontinued because of insufficient immunogenicity and a low seroconversion rate in adults. Here, we compared the immunogenicity of rMeV expressing a soluble prefusion spike (preS) protein stabilized by two prolines (rMeV-preS-2P) with a rMeV expressing a soluble preS protein stabilized by six prolines (rMeV-preS-6P). We found that rMeV-preS-6P expressed approximately five times more preS than rMeV-preS-2P in cell culture. Importantly, rMeV-preS-6P induced 30-60 and six times more serum immunoglobulin G and neutralizing antibody than rMeV-preS-2P, respectively, in IFNAR-/- mice. IFNAR-/- mice immunized with rMeV-preS-6P were completely protected from challenge with a mouse-adapted SARS-CoV-2, whereas those immunized with rMeV-preS-2P were partially protected. In addition, hamsters immunized with rMeV-preS-6P were completely protected from the challenge with a Delta variant of SARS-CoV-2. Our results demonstrate that rMeV-preS-6P is significantly more efficacious than rMeV-preS-2P, highlighting the value of using preS-6P as the antigen for developing vaccines against SARS-CoV-2.


Asunto(s)
COVID-19 , Cricetinae , Animales , Humanos , Ratones , COVID-19/prevención & control , SARS-CoV-2/genética , Vacunas contra la COVID-19 , Pandemias , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes , Virus del Sarampión/genética , Prolina , Anticuerpos Antivirales
15.
J Immunol ; 207(10): 2589-2597, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34625522

RESUMEN

Respiratory syncytial virus (RSV) infection in infancy is associated with increased risk of asthma, except in those with allergic disease at the time of infection. Using house dust mite allergen, we examined the effect of pre-existing atopy on postviral airway disease using Sendai virus in mice, which models RSV infection in humans. Sendai virus drives postviral airway disease in nonatopic mice; however, pre-existing atopy protected against the development of airway disease. This protection depended upon neutrophils, as depletion of neutrophils at the time of infection restored the susceptibility of atopic mice to postviral airway disease. Associated with development of atopy was an increase in polymorphonuclear neutrophil-dendritic cell hybrid cells that develop in Th2 conditions and demonstrated increased viral uptake. Systemic inhibition of IL-4 reversed atopic protection against postviral airway disease, suggesting that increased virus uptake by neutrophils was IL-4 dependent. Finally, human neutrophils from atopic donors were able to reduce RSV infection of human airway epithelial cells in vitro, suggesting these findings could apply to the human. Collectively our data support the idea that pre-existing atopy derives a protective neutrophil response via potential interaction with IL-4, preventing development of postviral airway disease.


Asunto(s)
Hipersensibilidad Inmediata/inmunología , Neutrófilos/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Respirovirus/inmunología , Animales , Humanos , Ratones , Ratones Endogámicos BALB C , Virus Sincitiales Respiratorios/inmunología , Virus Sendai/inmunología
16.
J Infect Dis ; 225(7): 1189-1196, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34129040

RESUMEN

BACKGROUND: The fusion (F) glycoprotein of respiratory syncytial virus (RSV) represents the major neutralizing antigen, and antibodies against the pre-F conformation have the most potent neutralizing activity. This study aimed to assess the correlation between maternal antibody titers against the pre-F, post-F, and G glycoproteins and the child's risk of developing severe RSV bronchiolitis early in infancy. METHODS: We identified previously healthy term infants <3 months of age hospitalized with RSV bronchiolitis from December 2015 to March 2016. We measured IgG antibody titers to pre-F, post-F, and G proteins in maternal sera obtained at 9-12 weeks of pregnancy of these hospitalized infants' mothers (n = 94) and compared them with serum antibody titers of control pregnant mothers (n = 130) whose children were not hospitalized. RESULTS: All maternal samples (n = 224) had detectable pre-F antibodies. Pre-F antibody titers were significantly lower in mothers whose infants were hospitalized with RSV bronchiolitis compared with those mothers whose infants were not hospitalized (23.9 [range (or antibody titer range), 1.4-273.7] µg/L vs 30.6 [XXX, 3.4-220.0] µg/L; P = .0026). There were no significant differences in maternal post-F and G antibody titers between hospitalized and nonhospitalized infants. CONCLUSIONS: Our findings indicate that maternal pre-F antibodies are fundamental for providing immune protection to the infant.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Niño , Femenino , Hospitalización , Humanos , Lactante , Embarazo , Mujeres Embarazadas , Proteínas Virales de Fusión
17.
J Infect Dis ; 227(1): 61-70, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36200173

RESUMEN

BACKGROUND: The interplay among respiratory syncytial virus (RSV) loads, mucosal interferons (IFN), and disease severity in RSV-infected children is poorly understood. METHODS: Children <2 years of age with mild (outpatients) or severe (inpatients) RSV infection and healthy controls were enrolled, and nasopharyngeal samples obtained for RSV loads and innate cytokines quantification. Patients were stratified by age (0-6 and >6-24 months) and multivariable analyses performed to identify predictors of disease severity. RESULTS: In 2015-2019 we enrolled 219 RSV-infected children (78 outpatients; 141 inpatients) and 34 healthy controls. Type I, II, and III IFN concentrations were higher in children aged >6 versus 0-6 months and, like CXCL10, they were higher in outpatients than inpatients and correlated with RSV loads (P < .05). Higher IL6 concentrations increased the odds of hospitalization (odds ratio [OR], 2.30; 95% confidence interval [CI], 1.07-5.36) only in children >6 months, while higher IFN-λ2/3 concentrations had the opposite effect irrespective of age (OR, 0.38; 95% CI, .15-.86). Likewise, higher CXCL10 concentrations decreased the odds of hospitalization (OR, 0.21; 95% CI, .08-.48), oxygen administration (OR, 0.42; 95% CI, .21-.80),PICU admission (OR, 0.39; 95% CI, .20-.73), and prolonged hospitalization (OR, 0.57; 95% CI, .32-.98) irrespective of age. CONCLUSIONS: Children with milder RSV infection and those aged >6 months had higher concentrations of mucosal IFNs, suggesting that maturation of mucosal IFN responses are associated with protection against severe RSV disease.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Niño , Lactante , Preescolar , Interferón lambda , Carga Viral , Gravedad del Paciente
18.
J Infect Dis ; 225(2): 208-213, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34618885

RESUMEN

The burden of coronavirus disease 2019 (COVID-19) in children represents a fraction of cases worldwide, yet a subset of those infected are at risk for severe disease. We measured plasma severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in a cohort of 103 children hospitalized with COVID-19 with diverse clinical manifestations. SARS-CoV-2 RNAemia was detected in 27 (26%) of these children, lasted for a median of 6 (interquartile range, 2-9) days, and was associated with higher rates of oxygen administration, admission to the intensive care unit, and longer hospitalization.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Adolescente , COVID-19/epidemiología , Niño , Preescolar , Femenino , Hospitalización , Humanos , Lactante , Unidades de Cuidados Intensivos , Masculino , Nasofaringe/virología , ARN Viral/genética , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad , Viremia/epidemiología
19.
J Virol ; 95(6)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33408176

RESUMEN

Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract (LRT) infections, with increased severity in high-risk human populations, such as infants, the immunocompromised, and the elderly. Although the virus was identified more than 60 years ago, there is still no licensed vaccine available. Over the years, several vaccine delivery strategies have been evaluated. In this study, we developed two recombinant vesicular stomatitis virus (rVSV) vector-based vaccine candidates expressing the RSV-G (attachment) protein (rVSV-G) or F (fusion) protein (rVSV-F). All vectors were evaluated in the cotton rat animal model for their in vivo immunogenicity and protective efficacy against an RSV-A2 virus challenge. Intranasal (i.n.) delivery of rVSV-G and rVSV-F together completely protected the lower respiratory tract (lungs) at doses as low as 103 PFU. In contrast, doses greater than 106 PFU were required to protect the upper respiratory tract (URT) completely. Reimmunization of RSV-immune cotton rats was most effective with rVSV-F. In immunized animals, overall antibody responses were sufficient for protection, whereas CD4 and CD8 T cells were not necessary. A prime-boost immunization regimen increased both protection and neutralizing antibody titers. Overall, mucosally delivered rVSV-vector-based RSV vaccine candidates induce protective immunity and therefore represent a promising immunization regimen against RSV infection.IMPORTANCE Even after decades of intensive research efforts, a safe and efficacious RSV vaccine remains elusive. Expression of heterologous antigens from rVSV vectors has demonstrated several practical and safety advantages over other virus vector systems and live attenuated vaccines. In this study, we developed safe and efficacious vaccine candidates by expressing the two major immunogenic RSV surface proteins in rVSV vectors and delivering them mucosally in a prime-boost regimen. The main immune parameter responsible for protection was the antibody response. These vaccine candidates induced complete protection of both the upper and lower respiratory tracts.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Virus Sincitial Respiratorio Humano/inmunología , Vesiculovirus/genética , Proteínas del Envoltorio Viral/inmunología , Proteínas Virales de Fusión/inmunología , Administración a través de la Mucosa , Animales , Modelos Animales de Enfermedad , Vectores Genéticos , Inmunidad Celular , Inmunidad Humoral , Inmunización , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Infecciones por Virus Sincitial Respiratorio/inmunología , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/genética , Sistema Respiratorio/inmunología , Sistema Respiratorio/virología , Sigmodontinae , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Vesiculovirus/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo
20.
J Virol ; 95(16): e0001021, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34037420

RESUMEN

Respiratory syncytial virus (RSV) has been reported to use CX3CR1 in vitro as a receptor on cultured primary human airway epithelial cultures. To evaluate CX3CR1 as the receptor for RSV in vivo, we used the cotton rat animal model because of its high permissiveness for RSV infection. Sequencing the cotton rat CX3CR1 gene revealed 91% amino acid similarity to human CX3CR1. Previous work found that RSV binds to CX3CR1 via its attachment glycoprotein (G protein) to infect primary human airway cultures. To determine whether CX3CR1-G protein interaction is necessary for RSV infection, recombinant RSVs containing mutations in the CX3CR1 binding site of the G protein were tested in cotton rats. In contrast to wild-type virus, viral mutants did not grow in the lungs of cotton rats. When RSV was incubated with an antibody blocking the CX3CR1 binding site of G protein and subsequently inoculated intranasally into cotton rats, no virus was found in the lungs 4 days postinfection. In contrast, growth of RSV was not affected after preincubation with heparan sulfate (the receptor for RSV on immortalized cell lines). A reduction in CX3CR1 expression in the cotton rat lung through the use of peptide-conjugated morpholino oligomers led to a 10-fold reduction in RSV titers at day 4 postinfection. In summary, these results indicate that CX3CR1 functions as a receptor for RSV in cotton rats and, in combination with data from human airway epithelial cell cultures, strongly suggest that CX3CR1 is a primary receptor for naturally acquired RSV infection. IMPORTANCE The knowledge about a virus receptor is useful to better understand the uptake of a virus into a cell and potentially develop antivirals directed against either the receptor molecule on the cell or the receptor-binding protein of the virus. Among a number of potential receptor proteins, human CX3CR1 has been demonstrated to act as a receptor for respiratory syncytial virus (RSV) on human epithelial cells in tissue culture. Here, we report that the cotton rat CX3CR1, which is similar to the human molecule, acts as a receptor in vivo. This study strengthens the argument that CX3CR1 is a receptor molecule for RSV.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/metabolismo , Receptores Virales/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/fisiología , Animales , Anticuerpos Antivirales/farmacología , Sitios de Unión , Receptor 1 de Quimiocinas CX3C/antagonistas & inhibidores , Receptor 1 de Quimiocinas CX3C/química , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/virología , Heparitina Sulfato/metabolismo , Humanos , Mutación , Receptores Virales/antagonistas & inhibidores , Receptores Virales/química , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitial Respiratorio Humano/crecimiento & desarrollo , Virus Sincitial Respiratorio Humano/metabolismo , Sistema Respiratorio/metabolismo , Sistema Respiratorio/virología , Sigmodontinae , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA