Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Cancer ; 22(1): 38, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34986841

RESUMEN

BACKGROUND: Melanoma-intrinsic activated ß-catenin pathway, the product of the catenin beta 1 (CTNNB1) gene, has been associated with low/absent tumor-infiltrating lymphocytes, accelerated tumor growth, metastases development, and resistance to anti-PD-L1/anti-CTLA-4 agents in mouse melanoma models. Little is known about the association between the adenomatous polyposis coli (APC) and CTNNB1 gene mutations in stage IV melanoma with immunotherapy response and overall survival (OS). METHODS: We examined the prognostic significance of somatic APC/CTNNB1 mutations in the Cancer Genome Atlas Project for Skin Cutaneous Melanoma (TCGA-SKCM) database. We assessed APC/CTNNB1 mutations as predictors of response to immunotherapies in a clinicopathologically annotated metastatic patient cohort from three US melanoma centers. RESULTS: In the TCGA-SKCM patient cohort (n = 434) presence of a somatic APC/CTNNB1 mutation was associated with a worse outcome only in stage IV melanoma (n = 82, median OS of APC/CTNNB1 mutants vs. wild-type was 8.15 vs. 22.8 months; log-rank hazard ratio 4.20, p = 0.011). APC/CTNNB1 mutation did not significantly affect lymphocyte distribution and density. In the 3-melanoma institution cohort, tumor tissues underwent targeted panel sequencing using two standards of care assays. We identified 55 patients with stage IV melanoma and APC/CTNNB1 genetic aberrations (mut) and 169 patients without (wt). At a median follow-up of more than 25 months for both groups, mut compared with wt patients had slightly more frequent (44% vs. 39%) and earlier (66% vs. 45% within six months from original diagnosis of stage IV melanoma) development of brain metastases. Nevertheless, time-to-development of brain metastases was not significantly different between the two groups. Fortunately, mut patients had similar clinical benefits from PD-1 inhibitor-based treatments compared to wt patients (median OS 26.1 months vs. 29.9 months, respectively, log-rank p = 0.23). Less frequent mutations in the NF1, RAC1, and PTEN genes were seen in the mut compared with wt patients from the 3-melanoma institution cohort. Analysis of brain melanoma tumor tissues from a separate craniotomy patient cohort (n = 55) showed that melanoma-specific, activated ß-catenin (i.e., nuclear localization) was infrequent (n = 3, 6%) and not prognostic in established brain metastases. CONCLUSIONS: APC/CTNNB1 mutations are associated with a worse outcome in stage IV melanoma and early brain metastases independent of tumor-infiltrating lymphocyte density. However, PD1 inhibitor-based treatments provide comparable benefits to both mut and wt patients with stage IV melanoma.


Asunto(s)
Genes APC , Melanoma/genética , Melanoma/mortalidad , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/mortalidad , beta Catenina/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Linfocitos Infiltrantes de Tumor/patología , Masculino , Persona de Mediana Edad , Mutación , Estadificación de Neoplasias , Pronóstico , Modelos de Riesgos Proporcionales , Melanoma Cutáneo Maligno
2.
Cancers (Basel) ; 14(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36230691

RESUMEN

Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are a heterogenous group of malignancies originating from neuroendocrine cells of the gastrointestinal tract, the incidence of which has been increasing for several decades. While there has been significant progress in the development of therapeutic options for patients with advanced or metastatic disease, these remain limited both in quantity and durability of benefit. This review examines the latest research elucidating the mechanisms of both up-front resistance and the eventual development of resistance to the primary systemic therapeutic options including somatostatin analogues, peptide receptor radionuclide therapy with lutetium Lu 177 dotatate, everolimus, sunitinib, and temozolomide-based chemotherapy. Further, potential strategies for overcoming these mechanisms of resistance are reviewed in addition to a comprehensive review of ongoing and planned clinical trials addressing this important challenge.

3.
Cancers (Basel) ; 13(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071333

RESUMEN

Adrenocortical carcinoma (ACC) is a rare cancer of the adrenal gland that is frequently associated with excess production of adrenal hormones. Although surgical resection may be curative in early-stage disease, few effective therapeutic options exist in the inoperable advanced or metastatic setting. Immunotherapies, inclusive of a broad array of immune-activating and immune-modulating antineoplastic agents, have demonstrated clinical benefit in a wide range of solid and hematologic malignancies. Due to the broad activity across multiple cancer types, there is significant interest in testing these agents in rare tumors, including ACC. Multiple clinical trials evaluating immunotherapies for the treatment of ACC have been conducted, and many more are ongoing or planned. Immunotherapies that have been evaluated in clinical trials for ACC include the immune checkpoint inhibitors pembrolizumab, nivolumab, and avelumab. Other immunotherapies that have been evaluated include the monoclonal antibodies figitumumab and cixutumumab directed against the ACC-expressed insulin-like growth factor 1 (IGF-1) receptor, the recombinant cytotoxin interleukin-13-pseudomonas exotoxin A, and autologous tumor lysate dendritic cell vaccine. These agents have shown modest clinical activity, although nonzero in the case of the immune checkpoint inhibitors. Clinical trials are ongoing to evaluate whether this clinical activity may be augmented through combinations with other immune-acting agents or targeted therapies.

4.
Biomolecules ; 10(7)2020 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-32605175

RESUMEN

Mesothelin (MSLN) is a cell surface glycoprotein normally expressed only on serosal surfaces, and not found in the parenchyma of vital organs. Many solid tumors also express MSLN, including mesothelioma and pancreatic adenocarcinoma. Due to this favorable expression profile, MSLN represents a viable target for directed anti-neoplastic therapies, such as recombinant immunotoxins (iToxs). Pre-clinical testing of MSLN-targeted iTox's has yielded a strong body of evidence for activity against a number of solid tumors. This has led to multiple clinical trials, testing the safety and efficacy of the clinical leads SS1P and LMB-100. While promising clinical results have been observed, neutralizing anti-drug antibody (ADA) formation presents a major challenge to overcome in the therapeutic development process. Additionally, on-target, off-tumor toxicity from serositis and non-specific capillary leak syndrome (CLS) also limits the dose, and therefore, impact anti-tumor activity. This review summarizes existing pre-clinical and clinical data on MSLN-targeted iTox's. In addition, we address the potential future directions of research to enhance the activity of these anti-tumor agents.


Asunto(s)
Proteínas Ligadas a GPI/metabolismo , Inmunotoxinas/uso terapéutico , Mesotelioma/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/metabolismo , Ensayos Clínicos como Asunto , Proteínas Ligadas a GPI/química , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Inmunotoxinas/química , Inmunotoxinas/farmacología , Mesotelina , Mesotelioma/metabolismo , Terapia Molecular Dirigida , Neoplasias Pancreáticas/metabolismo
5.
Front Oncol ; 8: 584, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30662871

RESUMEN

Background: Little is known about the prognostic significance of somatically mutated genes in metastatic melanoma (MM). We have employed a combined clinical and bioinformatics approach on tumor samples from cutaneous melanoma (SKCM) as part of The Cancer Genome Atlas project (TCGA) to identify mutated genes with potential clinical relevance. Methods: After limiting our DNA sequencing analysis to MM samples (n = 356) and to the CANCER CENSUS gene list, we filtered out mutations with low functional significance (snpEFF). We performed Cox analysis on 53 genes that were mutated in ≥3% of samples, and had ≥50% difference in incidence of mutations in deceased subjects versus alive subjects. Results: Four genes were potentially prognostic [RAC1, FGFR1, CARD11, CIITA; false discovery rate (FDR) < 0.2]. We identified 18 additional genes (e.g., SPEN, PDGFRB, GNAS, MAP2K1, EGFR, TSC2) that were less likely to have prognostic value (FDR < 0.4). Most somatic mutations in these 22 genes were infrequent (< 10%), associated with high somatic mutation burden, and were evenly distributed across all exons, except for RAC1 and MAP2K1. Mutations in only 9 of these 22 genes were also identified by RNA sequencing in >75% of the samples that exhibited corresponding DNA mutations. The low frequency, UV signature type and RNA expression of the 22 genes in MM samples were confirmed in a separate multi-institution validation cohort (n = 413). An underpowered analysis within a subset of this validation cohort with available patient follow-up (n = 224) showed that somatic mutations in SPEN and RAC1 reached borderline prognostic significance [log-rank favorable (p = 0.09) and adverse (p = 0.07), respectively]. Somatic mutations in SPEN, and to a lesser extent RAC1, were not associated with definite gene copy number or RNA expression alterations. High (>2+) nuclear plus cytoplasmic expression intensity for SPEN was associated with longer melanoma-specific overall survival (OS) compared to lower (≤ 2+) nuclear intensity (p = 0.048). We conclude that expressed somatic mutations in infrequently mutated genes beyond the well-characterized ones (e.g., BRAF, RAS, CDKN2A, PTEN, TP53), such as RAC1 and SPEN, may have prognostic significance in MM.

6.
Biomaterials ; 84: 42-53, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26803410

RESUMEN

Tumor-homing cytotoxic stem cell (SC) therapy is a promising new approach for treating the incurable brain cancer glioblastoma (GBM). However, problems of retaining cytotoxic SCs within the post-surgical GBM resection cavity are likely to significantly limit the clinical utility of this strategy. Here, we describe a new fibrin-based transplant approach capable of increasing cytotoxic SC retention and persistence within the resection cavity, yet remaining permissive to tumoritropic migration. This fibrin-based transplant can effectively treat both solid and post-surgical human GBM in mice. Using our murine model of image-guided model of GBM resection, we discovered that suspending human mesenchymal stem cells (hMSCS) in a fibrin matrix increased initial retention in the surgical resection cavity 2-fold and prolonged persistence in the cavity 3-fold compared to conventional delivery strategies. Time-lapse motion analysis revealed that cytotoxic hMSCs in the fibrin matrix remain tumoritropic, rapidly migrating from the fibrin matrix to co-localize with cultured human GBM cells. We encapsulated hMSCs releasing the cytotoxic agent TRAIL (hMSC-sTR) in fibrin, and found hMSC-sTR/fibrin therapy reduced the viability of multiple 3-D human GBM spheroids and regressed established human GBM xenografts 3-fold in 11 days. Mimicking clinical therapy of surgically resected GBM, intra-cavity seeding of therapeutic hMSC-sTR encapsulated in fibrin reduced post-surgical GBM volumes 6-fold, increased time to recurrence 4-fold, and prolonged median survival from 15 to 36 days compared to control-treated animals. Fibrin-based SC therapy could represent a clinically compatible, viable treatment to suppress recurrence of post-surgical GBM and other lethal cancer types.


Asunto(s)
Neoplasias Encefálicas/terapia , Fibrina/farmacología , Glioblastoma/terapia , Trasplante de Células Madre , Animales , Neoplasias Encefálicas/cirugía , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Progresión de la Enfermedad , Glioblastoma/cirugía , Humanos , Ratones Desnudos , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Andamios del Tejido/química , Resultado del Tratamiento
7.
Biomaterials ; 90: 116-25, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27016620

RESUMEN

Engineered stem cell (SC)-based therapy holds enormous promise for treating the incurable brain cancer glioblastoma (GBM). Retaining the cytotoxic SCs in the surgical cavity after GBM resection is one of the greatest challenges to this approach. Here, we describe a biocompatible electrospun nanofibrous scaffold (bENS) implant capable of delivering and retaining tumor-homing cytotoxic stem cells that suppress recurrence of post-surgical GBM. As a new approach to GBM therapy, we created poly(l-lactic acid) (PLA) bENS bearing drug-releasing human mesenchymal stem cells (hMSCs). We discovered that bENS-based implant increased hMSC retention in the surgical cavity 5-fold and prolonged persistence 3-fold compared to standard direct injection using our mouse model of GBM surgical resection/recurrence. Time-lapse imaging showed cytotoxic hMSC/bENS treatment killed co-cultured human GBM cells, and allowed hMSCs to rapidly migrate off the scaffolds as they homed to GBMs. In vivo, bENS loaded with hMSCs releasing the anti-tumor protein TRAIL (bENS(sTR)) reduced the volume of established GBM xenografts 3-fold. Mimicking clinical GBM patient therapy, lining the post-operative GBM surgical cavity with bENS(sTR) implants inhibited the re-growth of residual GBM foci 2.3-fold and prolonged post-surgical median survival from 13.5 to 31 days in mice. These results suggest that nanofibrous-based SC therapies could be an innovative new approach to improve the outcomes of patients suffering from terminal brain cancer.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/terapia , Sistemas de Liberación de Medicamentos , Glioblastoma/terapia , Nanofibras/química , Trasplante de Células Madre , Andamios del Tejido/química , Animales , Antineoplásicos/uso terapéutico , Encéfalo/patología , Encéfalo/cirugía , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Línea Celular , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Glioblastoma/patología , Glioblastoma/cirugía , Humanos , Ratones Desnudos , Nanofibras/ultraestructura , Poliésteres/química , Trasplante de Células Madre/métodos , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA