Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(3): 447-462.e10, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244544

RESUMEN

Tumor suppressor BRCA2 functions in homology-directed repair (HDR), the protection of stalled replication forks, and the suppression of replicative gaps, but their relative contributions to genome integrity and chemotherapy response are under scrutiny. Here, we report that mouse and human cells require a RAD51 filament stabilization motif in BRCA2 for fork protection and gap suppression but not HDR. In mice, the loss of fork protection/gap suppression does not compromise genome stability or shorten tumor latency. By contrast, HDR deficiency increases spontaneous and replication stress-induced chromosome aberrations and tumor predisposition. Unlike with HDR, fork protection/gap suppression defects are also observed in Brca2 heterozygous cells, likely due to reduced RAD51 stabilization at stalled forks/gaps. Gaps arise from PRIMPOL activity, which is associated with 5-hydroxymethyl-2'-deoxyuridine sensitivity due to the formation of SMUG1-generated abasic sites and is exacerbated by poly(ADP-ribose) polymerase (PARP) inhibition. However, HDR proficiency has the major role in mitigating sensitivity to chemotherapeutics, including PARP inhibitors.


Asunto(s)
Proteína BRCA2 , Replicación del ADN , Recombinasa Rad51 , Animales , Humanos , Ratones , Proteína BRCA2/metabolismo , Reparación del ADN , Inestabilidad Genómica , Genómica , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación
2.
Proc Natl Acad Sci U S A ; 121(35): e2320804121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39172790

RESUMEN

Breast Cancer Type 1 Susceptibility Protein (BRCA1) is a tumor-suppressor protein that regulates various cellular pathways, including those that are essential for preserving genome stability. One essential mechanism involves a BRCA1-A complex that is recruited to double-strand breaks (DSBs) by RAP80 before initiating DNA damage repair (DDR). How RAP80 itself is recruited to DNA damage sites, however, is unclear. Here, we demonstrate an intrinsic correlation between a methyltransferase DOT1L-mediated RAP80 methylation and BRCA1-A complex chromatin recruitment that occurs during cancer cell radiotherapy resistance. Mechanistically, DOT1L is quickly recruited onto chromatin and methylates RAP80 at multiple lysines in response to DNA damage. Methylated RAP80 is then indispensable for binding to ubiquitinated H2A and subsequently triggering BRCA1-A complex recruitment onto DSBs. Importantly, DOT1L-catalyzed RAP80 methylation and recruitment of BRCA1 have clinical relevance, as inhibition of DOT1L or RAP80 methylation seems to enhance the radiosensitivity of cancer cells both in vivo and in vitro. These data reveal a crucial role for DOT1L in DDR through initiating recruitment of RAP80 and BRCA1 onto chromatin and underscore a therapeutic strategy based on targeting DOT1L to overcome tumor radiotherapy resistance.


Asunto(s)
Proteína BRCA1 , Reparación del ADN , Chaperonas de Histonas , N-Metiltransferasa de Histona-Lisina , Animales , Humanos , Ratones , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Línea Celular Tumoral , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Metilación , Metiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Tolerancia a Radiación/genética
3.
Mol Cell ; 71(4): 621-628.e4, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30057198

RESUMEN

FANCA is a component of the Fanconi anemia (FA) core complex that activates DNA interstrand crosslink repair by monoubiquitination of FANCD2. Here, we report that purified FANCA protein catalyzes bidirectional single-strand annealing (SA) and strand exchange (SE) at a level comparable to RAD52, while a disease-causing FANCA mutant, F1263Δ, is defective in both activities. FANCG, which directly interacts with FANCA, dramatically stimulates its SA and SE activities. Alternatively, FANCB, which does not directly interact with FANCA, does not stimulate this activity. Importantly, five other patient-derived FANCA mutants also exhibit deficient SA and SE, suggesting that the biochemical activities of FANCA are relevant to the etiology of FA. A cell-based DNA double-strand break (DSB) repair assay demonstrates that FANCA plays a direct role in the single-strand annealing sub-pathway (SSA) of DSB repair by catalyzing SA, and this role is independent of the canonical FA pathway and RAD52.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Reparación de la Incompatibilidad de ADN , ADN/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación G de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Reparación del ADN por Recombinación , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Línea Celular Tumoral , Clonación Molecular , ADN/metabolismo , Roturas del ADN de Doble Cadena , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación G de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Mariposas Nocturnas , Osteoblastos/citología , Osteoblastos/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
J Neurosci ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227158

RESUMEN

Cochlear hair cells (HCs) sense sound waves and allow us to hear. Loss of HCs will cause irreversible sensorineural hearing loss. It is well known that DNA damage repair plays a critical role in protecting cells in many organs. However, how HCs respond to DNA damage and how defective DNA damage repair contributes to hearing loss remain elusive.In this study, we showed that cisplatin induced DNA damage in outer hair cells (OHCs) and promoted OHC loss, leading to hearing loss in mice of either sex. Cisplatin induced the expression of Brca1, a DNA damage repair factor, in OHCs. Deficiency of Brca1 induced OHC and hearing loss, and further promoted cisplatin-induced DNA damage in OHCs, accelerating OHC loss. This study provides the first in vivo evidence demonstrating that cisplatin mainly induces DNA damage in OHCs and that BRCA1 promotes repair of DNA damage in OHCs and prevents hearing loss. Our findings not only demonstrate that DNA-damage inducible agent generates DNA damage in postmitotic HCs, but also suggest that DNA repair factors, like BRCA1, protect postmitotic HCs from DNA-damage induced cell death and hearing loss.Significance statement Sensorineural hearing loss is the most severe hearing loss caused by irreversible loss of cochlear hair cells. Hair cells are vulnerable to aging and ototoxic drug. Though DNA damage repair plays a critical role in protecting cells in many organs, it is poorly understood how DNA damage is repaired in hair cells. This study provides the first in vivo evidence demonstrating that cisplatin mainly induces DNA damage in outer hair cells and that BRCA1 promotes repair of DNA damage in outer hair cells and prevents outer hair cell loss as well as hearing loss.

5.
J Biol Chem ; : 107768, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270819

RESUMEN

Basal-like breast cancer may originate from luminal epithelial or cancerous cells. Inadequately repaired DNA damage impairs luminal differentiation and promotes aberrant luminal to basal trans-differentiation in mammary epithelial cells (MECs). Ubiquitin-specific peptidase 11 (USP11), a deubiquitinase, plays a critical role in DNA damage repair. The role of USP11 in controlling mammary cell differentiation and tumorigenesis remains poorly understood. We generated Usp11 knockout mice and breast cancer cell lines expressing wild-type (WT) and mutant form of USP11. By using these mutant mice, cell lines, and human USP11-deficient and -proficient breast cancer tissues, we tested how USP11 controls mammary cell fate. We generated Usp11 knock-out mice and found that deletion of Usp11 reduced the expression of E-cadherin and promoted DNA damage in MECs. Overexpression of WT USP11, but not a deubiquitinase-inactive mutant form of USP11, promoted luminal differentiation, enhanced DNA damage repair, and suppressed tumorigenesis in mice. Mechanistically, we found that USP11 enhanced the protein expression of E-cadherin dependent on its deubiquitinase activity, and that USP11 deubiquitinated E-cadherin at K738. We discovered that USP11 bound to E-cadherin through its C-terminal region. In human breast cancers, expression of USP11 was positively correlated with that of E-cadherin, and high USP11 predicted better recurrence-free survival. Our findings provide compelling genetic and biochemical evidence that USP11 not only promotes DNA damage repair but also deubiquitinates E-cadherin and maintains the luminal feature of mammary tumor cells, thereby suppressing luminal breast cancer.

6.
Nucleic Acids Res ; 51(17): 9166-9182, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37503842

RESUMEN

Histone deacetylase 6 (HDAC6) mediates DNA damage signaling by regulating the mismatch repair and nucleotide excision repair pathways. Whether HDAC6 also mediates DNA double-strand break (DSB) repair is unclear. Here, we report that HDAC6 negatively regulates DSB repair in an enzyme activity-independent manner. In unstressed cells, HDAC6 interacts with H2A/H2A.X to prevent its interaction with the E3 ligase RNF168. Upon sensing DSBs, RNF168 rapidly ubiquitinates HDAC6 at lysine 116, leading to HDAC6 proteasomal degradation and a restored interaction between RNF168 and H2A/H2A.X. H2A/H2A.X is ubiquitinated by RNF168, precipitating the recruitment of DSB repair factors (including 53BP1 and BRCA1) to chromatin and subsequent DNA repair. These findings reveal novel regulatory machinery based on an HDAC6-RNF168 axis that regulates the H2A/H2A.X ubiquitination status. Interfering with this axis might be leveraged to disrupt a key mechanism of cancer cell resistance to genotoxic damage and form a potential therapeutic strategy for cancer.


Asunto(s)
Reparación del ADN , Humanos , Línea Celular Tumoral , Daño del ADN , Histona Desacetilasa 6/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
7.
BMC Biol ; 22(1): 85, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627785

RESUMEN

BACKGROUND: Inadequate DNA damage repair promotes aberrant differentiation of mammary epithelial cells. Mammary luminal cell fate is mainly determined by a few transcription factors including GATA3. We previously reported that GATA3 functions downstream of BRCA1 to suppress aberrant differentiation in breast cancer. How GATA3 impacts DNA damage repair preventing aberrant cell differentiation in breast cancer remains elusive. We previously demonstrated that loss of p18, a cell cycle inhibitor, in mice induces luminal-type mammary tumors, whereas depletion of either Brca1 or Gata3 in p18 null mice leads to basal-like breast cancers (BLBCs) with activation of epithelial-mesenchymal transition (EMT). We took advantage of these mutant mice to examine the role of Gata3 as well as the interaction of Gata3 and Brca1 in DNA damage repair in mammary tumorigenesis. RESULTS: Depletion of Gata3, like that of Brca1, promoted DNA damage accumulation in breast cancer cells in vitro and in basal-like breast cancers in vivo. Reconstitution of Gata3 improved DNA damage repair in Brca1-deficient mammary tumorigenesis. Overexpression of GATA3 promoted homologous recombination (HR)-mediated DNA damage repair and restored HR efficiency of BRCA1-deficient cells. Depletion of Gata3 sensitized tumor cells to PARP inhibitor (PARPi), and reconstitution of Gata3 enhanced resistance of Brca1-deficient tumor cells to PARP inhibitor. CONCLUSIONS: These results demonstrate that Gata3 functions downstream of BRCA1 to promote DNA damage repair and suppress dedifferentiation in mammary tumorigenesis and progression. Our findings suggest that PARP inhibitors are effective for the treatment of GATA3-deficient BLBCs.


Asunto(s)
Neoplasias Mamarias Animales , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Animales , Ratones , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Daño del ADN , Reparación del ADN , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
8.
J Biol Chem ; 299(3): 102975, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738787

RESUMEN

Ca2+ and voltage-activated K+ (BK) channels are ubiquitous ion channels that can be modulated by accessory proteins, including ß, γ, and LINGO1 BK subunits. In this study, we utilized a combination of site-directed mutagenesis, patch clamp electrophysiology, and molecular modeling to investigate if the biophysical properties of BK currents were affected by coexpression of LINGO2 and to examine how they are regulated by oxidation. We demonstrate that LINGO2 is a regulator of BK channels, since its coexpression with BK channels yields rapid inactivating currents, the activation of which is shifted ∼-30 mV compared to that of BKα currents. Furthermore, we show the oxidation of BK:LINGO2 currents (by exposure to epifluorescence illumination or chloramine-T) abolished inactivation. The effect of illumination depended on the presence of GFP, suggesting that it released free radicals which oxidized cysteine or methionine residues. In addition, the oxidation effects were resistant to treatment with the cysteine-specific reducing agent DTT, suggesting that methionine rather than cysteine residues may be involved. Our data with synthetic LINGO2 tail peptides further demonstrate that the rate of inactivation was slowed when residues M603 or M605 were oxidized, and practically abolished when both were oxidized. Taken together, these data demonstrate that both methionine residues in the LINGO2 tail mediate the effect of oxidation on BK:LINGO2 channels. Our molecular modeling suggests that methionine oxidation reduces the lipophilicity of the tail, thus preventing it from occluding the pore of the BK channel.


Asunto(s)
Cisteína , Canales de Potasio de Gran Conductancia Activados por el Calcio , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Cisteína/metabolismo , Oxidación-Reducción , Péptidos/metabolismo , Metionina/metabolismo , Calcio/metabolismo
9.
Anal Chem ; 96(21): 8586-8593, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38728058

RESUMEN

Nowadays, signal enhancement is imperative to increase sensitivity of advanced ECL devices for expediting their promising applications in clinic. In this work, photodynamic-assisted electrochemiluminescence (PDECL) device was constructed for precision diagnosis of Parkinson, where an advanced emitter was prepared by electrostatically linking 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) with 1-butyl-3-methylimidazole tetrafluoroborate ([BMIm][BF4]). Specifically, protoporphyrin IX (PPIX) can trigger the photodynamic reaction under light irradiation with a wavelength of 450 nm to generate lots of singlet oxygen (1O2), showing a 2.43-fold magnification in the ECL responses. Then, the aptamer (Apt) was assembled on the functional BET-[BMIm] for constructing a "signal off" ECL biosensor. Later on, the PPIX was embedded into the G-quadruplex (G4) of the Apt to magnify the ECL signals for bioanalysis of α-synuclein (α-syn) under light excitation. In the optimized surroundings, the resulting PDECL sensor has a broad linear range of 100.0 aM ∼ 10.0 fM and a low limit of detection (LOD) of 63 aM, coupled by differentiating Parkinson patients from normal individuals according to the receiver operating characteristic (ROC) curve analysis of actual blood samples. Such research holds great promise for synthesis of other advanced luminophores, combined with achieving an early clinical diagnosis.


Asunto(s)
Compuestos de Boro , Técnicas Electroquímicas , Mediciones Luminiscentes , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/sangre , Compuestos de Boro/química , Técnicas Biosensibles/métodos , alfa-Sinucleína/análisis , alfa-Sinucleína/sangre , Protoporfirinas/química , Aptámeros de Nucleótidos/química , Límite de Detección
10.
Anal Chem ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311680

RESUMEN

Nowadays, continuous efforts have been devoted to designing stable and high-efficiency electrochemiluminescence (ECL) emitters as alternatives for tris(2,2'-bipyridine)-ruthenium(II) (Ru(bpy)32+) in medical research. Herein, a novel ECL emitter was obtained by coordinating crystalline covalent triazinyl frameworks (cCTFs) with Ru2+ (termed Ru-cCTFs), which exhibited strong ECL emission by the ligand to metal charge transfer (LMCT) route. After its integration with 4-mercaptopyridine (SH-Py), the resultant SH-Py-Ru-cCTFs achieved 2.3-fold enhancement in the ECL efficiency by employing Ru(bpy)32+ as a standard, which involved a dynamic "intrarticular radical annihilation" ECL pathway. On such foundation, an automated ECL (A-ECL) aptasensor was constructed with an "on-off-on" model and magnetic separation upon linkage of the SH-Py-Ru-cCTFs with streptavidin (SA) magnetic beads (MBs). This automatic assay of miRNA-182 showed a wider linear range from 1.0 to 100.0 fM with a correlation coefficient (R2) of 0.994, a lower limit of detection (LOD) down to 0.28 fM, and faster operation within 41 min. Impressively, this bioassay facilely distinguished the stages of glioma disease from clinical blood samples with high accuracy. Hence, this research sheds light on how to develop advanced ECL luminophores and an automatic method, showing substantial insights into pathogenesis research of gliomas.

11.
J Transl Med ; 22(1): 883, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354613

RESUMEN

Single-cell technology depicts integrated tumor profiles including both tumor cells and tumor microenvironments, which theoretically enables more robust diagnosis than traditional diagnostic standards based on only pathology. However, the inherent challenges of single-cell RNA sequencing (scRNA-seq) data, such as high dimensionality, low signal-to-noise ratio (SNR), sparse and non-Euclidean nature, pose significant obstacles for traditional diagnostic approaches. The diagnostic value of single-cell technology has been largely unexplored despite the potential advantages. Here, we present a graph neural network-based framework tailored for molecular diagnosis of primary liver tumors using scRNA-seq data. Our approach capitalizes on the biological plausibility inherent in the intercellular communication networks within tumor samples. By integrating pathway activation features within cell clusters and modeling unidirectional inter-cellular communication, we achieve robust discrimination between malignant tumors (including hepatocellular carcinoma, HCC, and intrahepatic cholangiocarcinoma, iCCA) and benign tumors (focal nodular hyperplasia, FNH) by scRNA data of all tissue cells and immunocytes only. The efficacy to distinguish iCCA from HCC was further validated on public datasets. Through extending the application of high-throughput scRNA-seq data into diagnosis approaches focusing on integrated tumor microenvironment profiles rather than a few tumor markers, this framework also sheds light on minimal-invasive diagnostic methods based on migrating/circulating immunocytes.


Asunto(s)
Neoplasias Hepáticas , Redes Neurales de la Computación , Análisis de la Célula Individual , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Análisis de la Célula Individual/métodos , ARN/metabolismo , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Análisis de Secuencia de ARN
12.
Phys Rev Lett ; 133(8): 086301, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39241705

RESUMEN

Persistent currents circulate continuously without requiring external power sources. Here, we extend their theory to include dissipation within the framework of non-Hermitian quantum Hamiltonians. Using Green's function formalism, we introduce a non-Hermitian Fermi-Dirac distribution and derive an analytical expression for the persistent current that relies solely on the complex spectrum. We apply our formula to two dissipative models supporting persistent currents: (i) a phase-biased superconducting-normal-superconducting junction; (ii) a normal ring threaded by a magnetic flux. We show that the persistent currents in both systems exhibit no anomalies at any emergent exceptional points, whose signatures are only discernible in the current susceptibility. We validate our findings by exact diagonalization and extend them to account for finite temperatures and interaction effects. Our formalism offers a general framework for computing quantum many-body observables of non-Hermitian systems in equilibrium, with potential extensions to nonequilibrium scenarios.

13.
Analyst ; 149(2): 426-434, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099364

RESUMEN

Nowadays, organic emitters suffer from insufficient electrochemiluminescence (ECL) efficiency in aqueous solutions, and their practical applications are severely restricted in the bio-sensing field. In this work, palladium nanospheres-embedded metal-organic frameworks (Pd@MOFs) were exploited to enhance the ECL efficiency of 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) prepared by a one-pot method in aqueous environment. First, the Pd@MOFs were generated via in situ reduction of Pd nanospheres anchored onto the MOFs, and fabricated by orderly coordination of palladium chloride (PdCl2) with 1,2,4,5-benzenetetramine (BTA) tetrahydrochloride. Then, the influence of protons on the ECL response of BET was studied in detail to obtain stronger ECL emission using potassium persulfate (K2S2O8) as co-reactant in aqueous environment. As a result, a 1.47-fold ECL efficiency enlargement of BET/K2S2O8 was harvested at the Pd@MOFs/GCE, where Ru(bpy)32+ behaved as a standard. Based on the fact that the ECL signals of the BET-covered Pd@MOFs modified glassy carbon electrode (simplified as BET/Pd@MOFs/GCE) can be quenched by Cu2+, the as-built ECL sensor showed a wide linear range (1.0-100.0 pM) and a limit of detection (LOD) as low as 0.12 pM. Hence, such research offers huge potential to promote the development of organic emitters in ECL biosensors and environmental monitoring.

14.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34353917

RESUMEN

The increasing complexity of different cell types revealed by single-cell analysis of tissues presents challenges in efficiently elucidating their functions. Here we show, using prostate as a model tissue, that primary organoids and freshly isolated epithelial cells can be CRISPR edited ex vivo using Cas9-sgRNA (guide RNA) ribotnucleoprotein complex technology, then orthotopically transferred in vivo into immunocompetent or immunodeficient mice to generate cancer models with phenotypes resembling those seen in traditional genetically engineered mouse models. Large intrachromosomal (∼2 Mb) or multigenic deletions can be engineered efficiently without the need for selection, including in isolated subpopulations to address cell-of-origin questions.


Asunto(s)
Deleción Cromosómica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , Próstata/citología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteína 9 Asociada a CRISPR/genética , Células Epiteliales , Genes Supresores de Tumor , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Organoides , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , ARN Guía de Kinetoplastida , Ribonucleoproteínas/genética , Regulador Transcripcional ERG/genética , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Lipid Res ; 64(12): 100465, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37890669

RESUMEN

Accurate intracellular cholesterol traffic plays crucial roles. Niemann Pick type C (NPC) proteins NPC1 and NPC2, are two lysosomal cholesterol transporters that mediate the cholesterol exit from lysosomes. However, other proteins involved in this process remain poorly defined. Here, we find that the previously unannotated protein TMEM241 is required for cholesterol egressing from lysosomes through amphotericin B-based genome-wide CRISPR-Cas9 KO screening. Ablation of TMEM241 caused impaired sorting of NPC2, a protein utilizes the mannose-6-phosphate (M6P) modification for lysosomal targeting, resulting in cholesterol accumulation in the lysosomes. TMEM241 is a member of solute transporters 35 nucleotide sugar transporters family and localizes on the cis-Golgi network. Our data indicate that TMEM241 transports UDP-N-acetylglucosamine (UDP-GlcNAc) into Golgi lumen and UDP-GlcNAc is used for the M6P modification of proteins including NPC2. Furthermore, Tmem241-deficient mice display cholesterol accumulation in pulmonary cells and behave pulmonary injury and hypokinesia. Taken together, we demonstrate that TMEM241 is a Golgi-localized UDP-GlcNAc transporter and loss of TMEM241 causes cholesterol accumulation in lysosomes because of the impaired M6P-dependent lysosomal targeting of NPC2.


Asunto(s)
Colesterol , Proteínas de Transporte Vesicular , Animales , Ratones , Proteínas de Transporte Vesicular/metabolismo , Colesterol/metabolismo , Uridina Difosfato/metabolismo , Lisosomas/metabolismo
16.
Anal Chem ; 95(50): 18572-18578, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38064592

RESUMEN

Electrochemiluminescence (ECL) has attracted significant interest in the analysis of cancer cells, where the ruthenium(II)-based emitter demonstrates urgency and feasibility to improve the ECL efficiency. In this work, the self-enhanced ECL luminophore was prepared by covalent anchoring of Pd nanoclusters on aminated metal organic frameworks (Pd NCs@MOFs), followed by linkage with bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) (RuP). The resultant luminophore showed 214-fold self-magnification in the ECL efficiency over RuP alone, combined by promoting the interfacial photoelectron transfer. The enhanced mechanism through ion annihilation was critically proved by controlled experiments and density functional theory (DFT) calculations. Based on the above, a "signal off" ECL biosensor was built by assembly of tyrosine kinase 7 (PTK-7) aptamer (Apt) on the established sensing platform for analysis of human lung cancer cells (A549). The built sensor showed a lower detection limit of 8 cells mL-1, achieving the single-cell detection. This work reported a self-enhanced strategy for synthesis of advanced ECL emitters, combined by exploring the ECL biosensing devices in the single-cell analysis of cancers.


Asunto(s)
Técnicas Biosensibles , Neoplasias Pulmonares , Nanopartículas del Metal , Estructuras Metalorgánicas , Rutenio , Humanos , Mediciones Luminiscentes , Técnicas Electroquímicas , Límite de Detección
17.
Anal Chem ; 95(10): 4735-4743, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36852949

RESUMEN

Nowadays, electrochemiluminescence (ECL) efficiency of an organic emitter is closely related with its potential applications in food safety and environmental monitoring fields. In this work, 2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine (TATB) was self-assembled to form hydrogen bond organic frameworks (HOFs), which worked as ideal reactors to generate highly active oxygen-containing radicals, followed by linking with isoluminol (ILu) via amide bond (termed ILu-HOFs). After covalent assembly with aminated indium-tin oxide electrode (labeled NH2-ITO), the ECL efficiency of the ILu-HOFs NH2-ITO showed about a 23.4-time increase over that of ILu itself in the presence of H2O2. Meanwhile, the enhanced ECL mechanism was mainly studied by electron paramagnetic resonance, theoretical calculation, and electrochemistry. On the above foundation, an aptamer "sandwich" ECL biosensor was constructed for detecting isocarbophos (ICP) via in situ elimination of H2O2 with catalase-linked palladium nanocubes (CAT-Pd NCs). The as-built sensor showed a broad linear range (1 pM to 100 nM) and a low limit of detection (LOD) down to 0.4 pM, coupled with efficient assays of ICP in lake water and cucumber juice samples. This strategy provides an effective way for the synthesis of advanced ECL emitter, coupled by showing promising applications in environmental and food analysis.


Asunto(s)
Técnicas Biosensibles , Peróxido de Hidrógeno , Enlace de Hidrógeno , Mediciones Luminiscentes , Límite de Detección , Electrodos , Técnicas Electroquímicas
18.
J Virol ; 96(6): e0148021, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107379

RESUMEN

In our previous study, we found that a new type of Chikungunya virus particle with a complete capsid deletion (ΔC-CHIKV) is still infectious in BHK-21 cells and demonstrated its potential as a live attenuated vaccine candidate. However, the low yield as well as the disability to propagate in vaccine production cell line Vero of ΔC-CHIKV are not practical for commercial vaccine development. In this study, we not only achieved the successful propagation of the viral particle in Vero cells, but significantly improved its yield through construction of a chimeric VEEV-ΔC-CHIKV and extensive passage in Vero cells. Mechanistically, high production of VEEV-ΔC-CHIKV is due to the improvement of viral RNA packaging efficiency conferred by adaptive mutations, especially those in envelope proteins. Similar to ΔC-CHIKV, the passaged VEEV-ΔC-CHIKV is safe, immunogenic, and efficacious, which protects mice from CHIKV challenge after only one shot of immunization. Our study demonstrates that the utilization of infectious capsidless viral particle of CHIKV as a vaccine candidate is a practical strategy for the development of alphavirus vaccine. IMPORTANCE Chikungunya virus (CHIKV) is one of important emerging alphaviruses. Currently, there are no licensed vaccines against CHIKV infection. We have previously found a new type of Chikungunya virus particle with a complete capsid deletion (ΔC-CHIKV) as a live attenuated vaccine candidate that is not suitable for commercial vaccine development with the low viral titer production. In this study, we significantly improved its production through construction of a chimeric VEEV-ΔC-CHIKV. Our results proved the utilization of infectious capsidless viral particle of CHIKV as a safe and practical vaccine candidate.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Vacunas Virales , Cultivo de Virus , Animales , Proteínas de la Cápside/genética , Fiebre Chikungunya/prevención & control , Virus Chikungunya/genética , Chlorocebus aethiops , Ratones , Desarrollo de Vacunas , Vacunas Atenuadas/genética , Células Vero , Vacunas Virales/genética , Cultivo de Virus/métodos
19.
Appl Opt ; 62(36): 9512-9522, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38108776

RESUMEN

In this paper, we present a robust method for nonisotropic point light source calibration through feature points selection. By analyzing the relationship between the observed surface and its image intensity under near-field lighting, the feature points selection method is first developed to effectively address the noisy observations and improve calibration robustness. Afterward, to enhance efficiency and accuracy of the calibration, a cost function of l p-norm is established based on the above relationship, and an improved Newton method-based iteration process is applied to calculate the light source parameters. The simulations demonstrate that the proposed method is capable of achieving robust calibration results with the estimation error less than 2.7 mm and 0.8°, even though the image intensities are corrupted by Gaussian white noise with standard deviation up to 0.4. The experimental validation is performed using a self-designed photometric stereo system, where the calibration of point light sources is conducted, and measurements are taken on a standard sphere and compressor blade based on the obtained calibration results, which demonstrates the effectiveness of what we believe to be a new method.

20.
Pestic Biochem Physiol ; 193: 105446, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37248015

RESUMEN

The use of herbicides is believed to have an impact on the metabolism, physiology and biochemistry of fish. In this study, we studied the effects of metamifop on the production and metabolism of Monopterus. albus living in the water. According to the semi-lethal concentration of metamifop for 96 h, four MET concentration groups (0.2-, 0.4-, 0.6- and 0.8 mg L-1) were set up for 96 h exposure test. The ammonia discharge rate decreased, hemolymph ammonia content increased significantly, and hemolymph urea nitrogen content decreased at all time periods of metamifop exposure. In liver, the protein content decreased, the neutral protease content increased significantly (p < 0.01), amino acid content increased, and ATP content increased significantly (p < 0.01). In brain, the protein content increased, the activity of acid protease, neutral protease and alkaline protease all decreased, amino acid content decreased significantly (p < 0.01), and the content of ATP decreased. Glutamic-pyruvic transaminase (GPT) activity did not change in liver but decreased in brain. Glutamine synthetase (GS) activity decreased in liver and increased in brain. Glutaminase (GLS) activity decreased in liver and increased in brain. In conclusion, the liver and brain tissues of M. albus react differently to MET exposure. The liver mainly synthesizes energy through hydrolyzed protein, while the brain mainly synthesizes protein. Amino acids produced by protein hydrolysis cannot be converted to alanine for storage, and the degraded amino acids lead to the elevation of endogenous ammonia. MET inhibits the removal of ammonia from M. albus. Only liver tissue can detoxify the eel by converting ammonia into glutamine. Brain should have to tolerate high levels of endogenous ammonia.


Asunto(s)
Amoníaco , Smegmamorpha , Animales , Amoníaco/metabolismo , Aminoácidos/metabolismo , Glutamina/metabolismo , Hígado/metabolismo , Smegmamorpha/metabolismo , Adenosina Trifosfato/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Urea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA