Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38610244

RESUMEN

Acoustic imaging technology has the advantages of non-contact and intuitive positioning. It is suitable for the rapid positioning of defects such as the mechanical loosening, discharge, and DC bias of power equipment. However, the existing research lacks the optimization design of microphone array topology. The acoustic frequency domain characteristics of typical power equipment are elaborately sorted out. After that, the cut-off frequencies of acoustic imaging instruments are determined, to meet the needs of the full bandwidth test requirements. Through a simulation calculation, the circular array is demonstrated to be the optimal shape. And the design parameters affect the imaging performance of the array to varying degrees, indicating that it is difficult to obtain the optimal array topology by an exhaustive method. Aimed at the complex working conditions of power equipment, a topology optimization design method of an acoustic imaging array for power equipment is proposed, and the global optimal solution of microphone array topology is obtained. Compared with the original array, the imaging performance of the improved LF and HF array is promoted by 54% and 49%, respectively. Combined with the simulation analysis and laboratory test, it is verified that the improved array can not only accurately locate the single sound source but also accurately identify the main sound source from the interference of the contiguous sound source.

2.
Sci Rep ; 3: 1599, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23549279

RESUMEN

Plasma plumes with exotically segmented channel structure and plasma bullet propagation are produced in atmospheric plasma jets. This is achieved by tailoring interruptions of a continuous DC power supply over the time scales of lifetimes of residual electrons produced by the preceding discharge phase. These phenomena are explained by studying the plasma dynamics using nanosecond-precision imaging. One of the plumes is produced using 2 - 10 µs interruptions in the 8 kV DC voltage and features a still bright channel from which a propagating bullet detaches. A shorter interruption of 900 ns produces a plume with the additional long conducting dark channel between the jet nozzle and the bright area. The bullet size, formation dynamics, and propagation speed and distance can be effectively controlled. This may lead to micrometer- and nanosecond-precision delivery of quantized plasma bits, warranted for next-generation health, materials, and device technologies.


Asunto(s)
Transporte de Electrón/efectos de la radiación , Electrones , Gases em Plasma/química , Gases em Plasma/efectos de la radiación , Campos Electromagnéticos , Ensayo de Materiales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA