Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Brain ; 146(10): 4247-4261, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37082944

RESUMEN

Although the Na-K-Cl cotransporter (NKCC1) inhibitor bumetanide has prominent positive effects on the pathophysiology of many neurological disorders, the mechanism of action is obscure. Attention paid to elucidating the role of Nkcc1 has mainly been focused on neurons, but recent single cell mRNA sequencing analysis has demonstrated that the major cellular populations expressing NKCC1 in the cortex are non-neuronal. We used a combination of conditional transgenic animals, in vivo electrophysiology, two-photon imaging, cognitive behavioural tests and flow cytometry to investigate the role of Nkcc1 inhibition by bumetanide in a mouse model of controlled cortical impact (CCI). Here, we found that bumetanide rescues parvalbumin-positive interneurons by increasing interneuron-microglia contacts shortly after injury. The longitudinal phenotypic changes in microglia were significantly modified by bumetanide, including an increase in the expression of microglial-derived BDNF. These effects were accompanied by the prevention of CCI-induced decrease in hippocampal neurogenesis. Treatment with bumetanide during the first week post-CCI resulted in significant recovery of working and episodic memory as well as changes in theta band oscillations 1 month later. These results disclose a novel mechanism for the neuroprotective action of bumetanide mediated by an acceleration of microglial activation dynamics that leads to an increase in parvalbumin interneuron survival following CCI, possibly resulting from increased microglial BDNF expression and contact with interneurons. Salvage of interneurons may normalize ambient GABA, resulting in the preservation of adult neurogenesis processes as well as contributing to bumetanide-mediated improvement of cognitive performance.


Asunto(s)
Bumetanida , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico , Ratones , Animales , Bumetanida/farmacología , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Microglía/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Parvalbúminas/metabolismo , Parvalbúminas/farmacología , Miembro 2 de la Familia de Transportadores de Soluto 12 , Interneuronas/metabolismo , Neurogénesis
2.
Cereb Cortex ; 32(17): 3829-3847, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35029628

RESUMEN

The temporal pattern of cortical plasticity induced by high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) is required to clarify their relative benefits to prevent neurological disorders. The purpose of this study is to define the time-dependent effects of work-matched HIIT and MICT on cortical plasticity, endurance, and sensorimotor performances over an 8-week training period in healthy rats. Adult healthy rats performed incremental exercise tests and sensorimotor tests before and at 2, 4, and 8 weeks of training. In parallel, cortical markers related to neurotrophic, angiogenic, and metabolic activities were assessed. Results indicate that HIIT induced an early and superior endurance improvement compared to MICT. We found significant enhancement of speed associated with lactate threshold (SLT) and maximal speed (Smax) in HIIT animals. MICT promoted an early increase in brain-derived neurotrophic factor and angiogenic/metabolic markers but showed less influence at 8 weeks. HIIT upregulated the insulin-like growth factor-1 (IGF-1) as well as neurotrophic, metabolic/angiogenic markers at 2 and 8 weeks and downregulated the neuronal K-Cl cotransporter KCC2 that regulates GABAA-mediated transmission. HIIT and MICT are effective in a time-dependent manner suggesting a complementary effect that might be useful in physical exercise guidelines for maintaining brain health.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Condicionamiento Físico Animal , Animales , Entrenamiento de Intervalos de Alta Intensidad/métodos , Condicionamiento Físico Animal/métodos , Ratas
3.
Eur J Neurosci ; 56(1): 3738-3754, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35478208

RESUMEN

Mitochondria are an autonomous organelle that plays a crucial role in the metabolic aspects of a cell. Cortical spreading depression (CSD) and fluctuations in the cerebral blood flow have for long been mechanisms underlying migraine. It is a neurovascular disorder with a unilateral manifestation of disturbing, throbbing and pulsating head pain. Migraine affects 2.6% and 21.7% of the general population and is the major cause of partial disability in the age group 15-49. Higher mutation rates, imbalance in concentration of physiologically relevant molecules and oxidative stress biomarkers have been the main themes of discussion in determining the role of mitochondrial disability in migraine. The correlation of migraine with other disorders like hemiplegic migraine; mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes [MELAS]; tension-type headache (TTH); cyclic vomiting syndrome (CVS), ischaemic stroke; and hypertension has helped in the assessment of the physiological and morphogenetic basis of migraine. Here, we have reviewed the different nuances of mitochondrial dysfunction and migraine. The different mtDNA polymorphisms that can affect the generation and transmission of nerve impulse has been highlighted and supported with research findings. In addition to this, the genetic basis of migraine pathogenesis as a consequence of mutations in nuclear DNA that can, in turn, affect the synthesis of defective mitochondrial proteins is discussed along with a brief overview of epigenetic profile. This review gives an overview of the pathophysiology of migraine and explores mitochondrial dysfunction as a potential underlying mechanism. Also, therapeutic supplements for managing migraine have been discussed at different junctures in this paper.


Asunto(s)
Isquemia Encefálica , Síndrome MELAS , Trastornos Migrañosos , Accidente Cerebrovascular , Humanos , Síndrome MELAS/tratamiento farmacológico , Síndrome MELAS/genética , Síndrome MELAS/patología , Trastornos Migrañosos/genética , Mitocondrias/genética , Mutación , Accidente Cerebrovascular/complicaciones
4.
Proc Natl Acad Sci U S A ; 116(6): 2328-2337, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30659145

RESUMEN

Mutations in the MFN2 gene encoding Mitofusin 2 lead to the development of Charcot-Marie-Tooth type 2A (CMT2A), a dominant axonal form of peripheral neuropathy. Mitofusin 2 is localized at both the outer membrane of mitochondria and the endoplasmic reticulum and is particularly enriched at specialized contact regions known as mitochondria-associated membranes (MAM). We observed that expression of MFN2R94Q induces distal axonal degeneration in the absence of overt neuronal death. The presence of mutant protein leads to reduction in endoplasmic reticulum and mitochondria contacts in CMT2A patient-derived fibroblasts, in primary neurons and in vivo, in motoneurons of a mouse model of CMT2A. These changes are concomitant with endoplasmic reticulum stress, calcium handling defects, and changes in the geometry and axonal transport of mitochondria. Importantly, pharmacological treatments reinforcing endoplasmic reticulum-mitochondria cross-talk, or reducing endoplasmic reticulum stress, restore the mitochondria morphology and prevent axonal degeneration. These results highlight defects in MAM as a cellular mechanism contributing to CMT2A pathology mediated by mutated MFN2.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Animales , Axones/metabolismo , Transporte Biológico , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Modelos Animales de Enfermedad , Retículo Endoplásmico/ultraestructura , Femenino , Marcha , Locomoción/genética , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/ultraestructura , Neuronas Motoras/metabolismo , Desnervación Muscular , Fibras Musculares de Contracción Lenta , Transducción de Señal
5.
Stroke ; 52(3): 1109-1114, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33517700

RESUMEN

BACKGROUND AND PURPOSE: The objective is to compare the effects of high-intensity interval training (HIIT) with long versus short intervals on endurance and motor performance. Their influence on neuroplasticity markers is assessed in the ipsilesional and contralesional cortex and hippocampus since their remodeling could improve functional recovery. METHODS: Rats performed work-matched HIIT4 (long intervals: 4 minutes) or HIIT1 (short intervals: 1 minute) on treadmill for 2 weeks following transient middle cerebral artery occlusion. Forelimb grip strength evaluated motor function while incremental exercise tests measured the endurance performance. Key neuroplasticity markers were assessed by Western blot. RESULTS: Both regimens were effective in enhancing both the speed associated with the lactate threshold and maximal speed at D8 and D15. Neuroplasticity markers were upregulated in the contralesional hemisphere after training contrary to the ipsilesional side. Grip strength completely recovered but is faster with HIIT4. CONCLUSIONS: HIIT with short and long intervals induced early aerobic fitness and grip strength improvements. Our findings revealed that neuroplasticity markers were upregulated in the contralesional cortex and hippocampus to promote functional recovery.


Asunto(s)
Isquemia Encefálica/rehabilitación , Entrenamiento de Intervalos de Alta Intensidad/métodos , Plasticidad Neuronal , Resistencia Física , Rehabilitación de Accidente Cerebrovascular/métodos , Animales , Corteza Cerebral , Lateralidad Funcional , Fuerza de la Mano , Hipocampo , Ataque Isquémico Transitorio/rehabilitación , Ácido Láctico/sangre , Masculino , Condicionamiento Físico Animal , Aptitud Física , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Resultado del Tratamiento
6.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809413

RESUMEN

Stroke-induced cognitive impairments affect the long-term quality of life. High-intensity interval training (HIIT) is now considered a promising strategy to enhance cognitive functions. This review is designed to examine the role of HIIT in promoting neuroplasticity processes and/or cognitive functions after stroke. The various methodological limitations related to the clinical relevance of studies on the exercise recommendations in individuals with stroke are first discussed. Then, the relevance of HIIT in improving neurotrophic factors expression, neurogenesis and synaptic plasticity is debated in both stroke and healthy individuals (humans and rodents). Moreover, HIIT may have a preventive role on stroke severity, as found in rodents. The potential role of HIIT in stroke rehabilitation is reinforced by findings showing its powerful neurogenic effect that might potentiate cognitive benefits induced by cognitive tasks. In addition, the clinical role of neuroplasticity observed in each hemisphere needs to be clarified by coupling more frequently to cellular/molecular measurements and behavioral testing.


Asunto(s)
Cognición/fisiología , Entrenamiento de Intervalos de Alta Intensidad , Plasticidad Neuronal/fisiología , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Humanos , Resistencia Física , Recuperación de la Función
7.
Ann Neurol ; 85(2): 204-217, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30597612

RESUMEN

OBJECTIVE: Dysregulation of γ-aminobutyric acidergic (GABAergic) transmission has been reported in lesional acquired epilepsies (gliomas, hippocampal sclerosis). We investigated its involvement in a developmental disorder, human focal cortical dysplasia (FCD), focusing on chloride regulation driving GABAergic signals. METHODS: In vitro recordings of 47 human cortical acute slices from 11 pediatric patients who received operations for FCD were performed on multielectrode arrays. GABAergic receptors and chloride regulators were pharmacologically modulated. Immunostaining for chloride cotransporter KCC2 and interneurons were performed on recorded slices to correlate electrophysiology and expression patterns. RESULTS: FCD slices retain intrinsic epileptogenicity. Thirty-six of 47 slices displayed spontaneous interictal discharges, along with a pattern specific to the histological subtypes. Ictal discharges were induced in proepileptic conditions in 6 of 8 slices in the areas generating spontaneous interictal discharges, with a transition to seizure involving the emergence of preictal discharges. Interictal discharges were sustained by GABAergic signaling, as a GABAA receptor blocker stopped them in 2 of 3 slices. Blockade of NKCC1 Cl- cotransporters further controlled interictal discharges in 9 of 12 cases, revealing a Cl- dysregulation affecting actions of GABA. Immunohistochemistry highlighted decreased expression and changes in KCC2 subcellular localization and a decrease in the number of GAD67-positive interneurons in regions generating interictal discharges. INTERPRETATION: Altered chloride cotransporter expression and changes in interneuron density in FCD may lead to paradoxical depolarization of pyramidal cells. Spontaneous interictal discharges are consequently mediated by GABAergic signals, and targeting chloride regulation in neurons may be considered for the development of new antiepileptic drugs. Ann Neurol 2019; 1-14 ANN NEUROL 2019;85:204-217.


Asunto(s)
Corteza Cerebral/metabolismo , Epilepsias Parciales/metabolismo , Malformaciones del Desarrollo Cortical/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Adolescente , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología , Niño , Preescolar , Electroencefalografía/métodos , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/fisiopatología , Femenino , Humanos , Masculino , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/fisiopatología
8.
Biomacromolecules ; 20(1): 149-163, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30376309

RESUMEN

Injectable hydrogels are promising platforms for tissue engineering and local drug delivery as they allow minimal invasiveness. We have here developed an injectable and biodegradable hydrogel based on an amphiphilic PNIPAAm- b-PLA- b-PEG- b-PLA- b-PNIPAAm pentablock copolymer synthesized by ring-opening polymerization/nitroxide-mediated polymerization (ROP/NMP) combination. The hydrogel formation at around 30 °C was demonstrated to be mediated by intermicellar bridging through the PEG central block. Such a result was particularly highlighted by the inability of a PEG- b-PLA- b-PNIPAAm triblock analog of the same composition to gelify. The hydrogels degraded through hydrolysis of the PLA esters until complete mass loss due to the diffusion of the recovered PEG and PNIPAAm/micelle based residues in the solution. Interestingly, hydrophobic molecules such as riluzole (neuroprotective drug) or cyanine 5.5 (imaging probe) could be easily loaded in the hydrogels' micelle cores by mixing them with the copolymer solution at room temperature. Drug release was correlated to polymer mass loss. The hydrogel was shown to be cytocompatible (neuronal cells, in vitro) and injectable through a small-gauge needle (in vivo in rats). Thus, this hydrogel platform displays highly attractive features for use in brain/soft tissue engineering as well as in drug delivery.


Asunto(s)
Plásticos Biodegradables/síntesis química , Portadores de Fármacos/química , Hidrogeles/química , Resinas Acrílicas/química , Animales , Plásticos Biodegradables/efectos adversos , Células Cultivadas , Portadores de Fármacos/efectos adversos , Liberación de Fármacos , Células HEK293 , Humanos , Hidrogeles/efectos adversos , Micelas , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/química , Poliésteres/química , Polietilenglicoles/química , Ratas , Riluzol/administración & dosificación , Riluzol/química , Tensoactivos/efectos adversos , Tensoactivos/síntesis química
9.
Ann Neurol ; 81(2): 251-265, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28074534

RESUMEN

OBJECTIVE: Rewiring of excitatory glutamatergic neuronal circuits is a major abnormality in epilepsy. Besides the rewiring of excitatory circuits, an abnormal depolarizing γ-aminobutyric acidergic (GABAergic) drive has been hypothesized to participate in the epileptogenic processes. However, a remaining clinically relevant question is whether early post-status epilepticus (SE) evoked chloride dysregulation is important for the remodeling of aberrant glutamatergic neuronal circuits. METHODS: Osmotic minipumps were used to infuse intracerebrally a specific inhibitor of depolarizing GABAergic transmission as well as a functionally blocking antibody toward the pan-neurotrophin receptor p75 (p75NTR ). The compounds were infused between 2 and 5 days after pilocarpine-induced SE. Immunohistochemistry for NKCC1, KCC2, and ectopic recurrent mossy fiber (rMF) sprouting as well as telemetric electroencephalographic and electrophysiological recordings were performed at day 5 and 2 months post-SE. RESULTS: Blockade of NKCC1 after SE with the specific inhibitor bumetanide restored NKCC1 and KCC2 expression, normalized chloride homeostasis, and significantly reduced the glutamatergic rMF sprouting within the dentate gyrus. This mechanism partially involves p75NTR signaling, as bumetanide application reduced SE-induced p75NTR expression and functional blockade of p75NTR decreased rMF sprouting. The early transient (3 days) post-SE infusion of bumetanide reduced rMF sprouting and recurrent seizures in the chronic epileptic phase. INTERPRETATION: Our findings show that early post-SE abnormal depolarizing GABA and p75NTR signaling fosters a long-lasting rearrangement of glutamatergic network that contributes to the epileptogenic process. This finding defines promising and novel targets to constrain reactive glutamatergic network rewiring in adult epilepsy. Ann Neurol 2017;81:251-265.


Asunto(s)
Bumetanida/farmacología , Fibras Musgosas del Hipocampo/efectos de los fármacos , Receptores de Factor de Crecimiento Nervioso/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Miembro 2 de la Familia de Transportadores de Soluto 12/efectos de los fármacos , Estado Epiléptico/metabolismo , Simportadores/efectos de los fármacos , Ácido gamma-Aminobutírico/efectos de los fármacos , Animales , Bumetanida/administración & dosificación , Masculino , Proteínas del Tejido Nervioso , Ratas , Ratas Wistar , Receptores de Factores de Crecimiento , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/administración & dosificación , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/fisiopatología , Cotransportadores de K Cl
10.
Stroke ; 48(10): 2855-2864, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28904232

RESUMEN

BACKGROUND AND PURPOSE: This study was designed to compare the effects of high-intensity interval training (HIT) and moderate-intensity aerobic training (MOD) on functional recovery and cerebral plasticity during the first 2 weeks after cerebral ischemia. METHODS: Rats were randomized as follows: control (n=15), SHAM (n=9), middle cerebral artery occlusion (n=13), middle cerebral artery occlusion at day 1 (n=7), MOD (n=13), and HIT (n=13). Incremental tests were performed at day 1 (D1) and 14 (D14) to identify the running speed associated with the lactate threshold (SLT) and the maximal speed (Smax). Functional tests were performed at D1, D7, and D14. Microglia form, cytokines, p75NTR (pan-neurotrophin receptor p75), potassium-chloride cotransporter type 2, and sodium-potassium-chloride cotransporter type 1 expression were made at D15. RESULTS: HIT was more effective to improve the endurance performance than MOD and induced a fast recovery of the impaired forelimb grip force. The ionized calcium binding adaptor molecule 1 (Iba-1)-positive cells with amoeboid form and the pro- and anti-inflammatory cytokine expression were lower in HIT group, mainly in the ipsilesional hemisphere. A p75NTR overexpression is observed on the ipsilesional side together with a restored sodium-potassium-chloride cotransporter type 1/potassium-chloride cotransporter type 2 ratio on the contralesional side. CONCLUSIONS: Low-volume HIT based on lactate threshold seems to be more effective after cerebral ischemia than work-matched MOD to improve aerobic fitness and grip strength and might promote cerebral plasticity.


Asunto(s)
Isquemia Encefálica/terapia , Plasticidad Neuronal/fisiología , Condicionamiento Físico Animal/métodos , Condicionamiento Físico Animal/fisiología , Recuperación de la Función/fisiología , Animales , Masculino , Distribución Aleatoria , Ratas , Resultado del Tratamiento
11.
Hum Mol Genet ; 21(5): 1004-17, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22076441

RESUMEN

Periventricular nodular heterotopia (PH) is a human brain malformation caused by defective neuronal migration that results in ectopic neuronal nodules lining the lateral ventricles beneath a normal appearing cortex. Most affected patients have seizures and their cognitive level varies from normal to severely impaired. Mutations in the Filamin-A (or FLNA) gene are the main cause of PH, but the underlying pathological mechanism remains unknown. Although two FlnA knockout mouse strains have been generated, none of them showed the presence of ectopic nodules. To recapitulate the loss of FlnA function in the developing rat brain, we used an in utero RNA interference-mediated knockdown approach and successfully reproduced a PH phenotype in rats comparable with that observed in human patients. In FlnA-knockdown rats, we report that PH results from a disruption of the polarized radial glial scaffold in the ventricular zone altering progression of neural progenitors through the cell cycle and impairing migration of neurons into the cortical plate. Similar alterations of radial glia are observed in human PH brains of a 35-week fetus and a 3-month-old child, harboring distinct FLNA mutations not previously reported. Finally, juvenile FlnA-knockdown rats are highly susceptible to seizures, confirming the reliability of this novel animal model of PH. Our findings suggest that the disorganization of radial glia is the leading cause of PH pathogenesis associated with FLNA mutations. Rattus norvegicus FlnA mRNA (GenBank accession number FJ416060).


Asunto(s)
Corteza Cerebral/metabolismo , Proteínas Contráctiles/metabolismo , Proteínas de Microfilamentos/metabolismo , Neuroglía/fisiología , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patología , Animales , Movimiento Celular , Proliferación Celular , Corteza Cerebral/embriología , Corteza Cerebral/patología , Ventrículos Cerebrales/patología , Proteínas Contráctiles/genética , Modelos Animales de Enfermedad , Femenino , Filaminas , Humanos , Lactante , Proteínas de Microfilamentos/genética , Datos de Secuencia Molecular , Neocórtex/embriología , Neocórtex/metabolismo , Neocórtex/patología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Neuroglía/metabolismo , Neuroglía/ultraestructura , Neuronas/fisiología , Interferencia de ARN , Ratas , Convulsiones/etiología
12.
J Neurosci ; 32(14): 4901-12, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22492046

RESUMEN

Cellular responses to protein misfolding are thought to play key roles in triggering neurodegeneration. In the mutant superoxide dismutase (mSOD1) model of amyotrophic lateral sclerosis (ALS), subsets of motoneurons are selectively vulnerable to degeneration. Fast fatigable motoneurons selectively activate an endoplasmic reticulum (ER) stress response that drives their early degeneration while a subset of mSOD1 motoneurons show exacerbated sensitivity to activation of the motoneuron-specific Fas/NO pathway. However, the links between the two mechanisms and the molecular basis of their cellular specificity remained unclear. We show that Fas activation leads, specifically in mSOD1 motoneurons, to reductions in levels of calreticulin (CRT), a calcium-binding ER chaperone. Decreased expression of CRT is both necessary and sufficient to trigger SOD1(G93A) motoneuron death through the Fas/NO pathway. In SOD1(G93A) mice in vivo, reductions in CRT precede muscle denervation and are restricted to vulnerable motor pools. In vitro, both reduced CRT and Fas activation trigger an ER stress response that is restricted to, and required for death of, vulnerable SOD1(G93A) motoneurons. Our data reveal CRT as a critical link between a motoneuron-specific death pathway and the ER stress response and point to a role of CRT levels in modulating motoneuron vulnerability to ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Calreticulina/antagonistas & inhibidores , Calreticulina/metabolismo , Estrés del Retículo Endoplásmico/genética , Neuronas Motoras/metabolismo , Receptor fas/genética , Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/genética , Animales , Muerte Celular/genética , Supervivencia Celular/genética , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/enzimología , Neuronas Motoras/patología , Mutación/genética , Transducción de Señal/genética , Superóxido Dismutasa/genética
13.
Physiol Behav ; 266: 114190, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37055005

RESUMEN

BACKGROUND/PURPOSE: The optimal endurance exercise parameters remain to be defined to potentiate long-term functional recovery after stroke. We aim to assess the effects of individualized high-intensity interval training (HIIT) with either long or short intervals on neurotrophic factors and their receptors, apoptosis markers and the two-main cation-chloride cotransporters in the ipsi- and contralesional cerebral cortices in rats with cerebral ischemia. Endurance performance and sensorimotor functions were also assessed METHODS: Rats with a 2 h transient middle cerebral artery occlusion (tMCAO) performed work-matched HIIT4 (intervals: 4 min) or HIIT1 (intervals: 1 min) on treadmill for 2 weeks. Incremental exercises and sensorimotor tests were performed at day 1 (D1), D8, and D15 after tMCAO. Molecular analyses were achieved in both the paretic and non-paretic triceps brachii muscles and the ipsi- and contralesional cortices at D17 RESULTS: Gains in endurance performance are in a time-dependent manner from the first week of training. This enhancement is supported by the upregulation of metabolic markers in both triceps brachii muscles. Both regimens alter the expression of neurotrophic markers and chloride homeostasis in a specific manner in the ipsi- and contralesional cortices. HIIT acts on apoptosis markers by promoting anti-apoptotic proteins in the ipsilesional cortex CONCLUSION: HIIT regimens seem to be of clinical relevance in the critical period of stroke rehabilitation by strongly improving aerobic performance. Also, the observed cortical changes suggest an influence of HIIT on neuroplasticity in both ipsi- and contralesional hemispheres. Such neurotrophic markers might be considered as biomarkers of functional recovery in individuals with stroke.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Accidente Cerebrovascular , Humanos , Ratas , Animales , Cloruros , Factores de Crecimiento Nervioso , Accidente Cerebrovascular/terapia , Homeostasis , Apoptosis
14.
Pharm Res ; 29(5): 1203-18, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22146803

RESUMEN

PURPOSE: Adenoviruses are among the most powerful gene delivery systems. Even if they present low potential for oncogenesis, there is still a need for minimizing widespread delivery to avoid deleterious reactions. In this study, we investigated Magnetofection efficiency to concentrate and guide vectors for an improved targeted delivery. METHOD: Magnetic nanoparticles formulations were complexed to a replication defective Adenovirus and were used to transduce cells both in vitro and in vivo. A new integrated magnetic procedure for cell sorting and genetic modification (i-MICST) was also investigated. RESULTS: Magnetic nanoparticles enhanced viral transduction efficiency and protein expression in a dose-dependent manner. They accelerated the transduction kinetics and allowed non-permissive cells infection. Magnetofection greatly improved adenovirus-mediated DNA delivery in vivo and provided a magnetic targeting. The i-MICST results established the efficiency of magnetic nanoparticles assisted viral transduction within cell sorting columns. CONCLUSION: The results showed that the combination of Magnetofection and Adenoviruses represents a promising strategy for gene therapy. Recently, a new integrated method to combine clinically approved magnetic cell isolation devices and genetic modification was developed. In this study, we validated that magnetic cell separation and adenoviral transduction can be accomplished in one reliable integrated and safe system.


Asunto(s)
Adenoviridae/genética , Sistemas de Liberación de Medicamentos , Técnicas de Transferencia de Gen , Magnetismo , Adenoviridae/química , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Citometría de Flujo , Terapia Genética/métodos , Proteínas Fluorescentes Verdes/farmacología , Células HeLa , Humanos , Ratas , Ratas Wistar , Factores de Tiempo , Transducción Genética
15.
J Physiol ; 589(Pt 10): 2475-96, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21486764

RESUMEN

KCC2 is a neuron-specific potassium-chloride co-transporter controlling intracellular chloride homeostasis in mature and developing neurons. It is implicated in the regulation of neuronal migration, dendrites outgrowth and formation of the excitatory and inhibitory synaptic connections. The function of KCC2 is suppressed under several pathological conditions including neuronal trauma, different types of epilepsies, axotomy of motoneurons, neuronal inflammations and ischaemic insults. However, it remains unclear how down-regulation of the KCC2 contributes to neuronal survival during and after toxic stress. Here we show that in primary hippocampal neuronal cultures the suppression of the KCC2 function using two different shRNAs, dominant-negative KCC2 mutant C568A or DIOA inhibitor, increased the intracellular chloride concentration [Cl⁻]i and enhanced the toxicity induced by lipofectamine-dependent oxidative stress or activation of the NMDA receptors. The rescuing of the KCC2 activity using over-expression of the active form of the KCC2, but not its non-active mutant Y1087D, effectively restored [Cl⁻]i and enhanced neuronal resistance to excitotoxicity. The reparative effects of KCC2 were mimicked by over-expression of the KCC3, a homologue transporter. These data suggest an important role of KCC2-dependent potassium/chloride homeostasis under neurototoxic conditions and reveal a novel role of endogenous KCC2 as a neuroprotective molecule.


Asunto(s)
Cloruros/metabolismo , Hipocampo/metabolismo , Simportadores/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Regulación hacia Abajo , Lípidos/efectos adversos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Simportadores/genética , Ácido gamma-Aminobutírico/metabolismo , Cotransportadores de K Cl
16.
Neural Plast ; 2011: 1-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21837281

RESUMEN

The K-Cl cotransporter KCC2 plays a crucial role in the functional development of GABA(A)-mediated responses rendering GABA hyperpolarizing in adult neurons. We have previously shown that BDNF upregulates KCC2 in immature neurons through the transcription factor Egr4. The effect of BDNF on Egr4 and KCC2 was shown to be dependent on the activation of ERK1/2. Here we demonstrate that the trophic factor neurturin can also trigger Egr4 expression and upregulate KCC2 in an ERK1/2-dependent manner. These results show that Egr4 is an important component in the mechanism for trophic factor-mediated upregulation of KCC2 in immature neurons involving the activation of specific intracellular pathways common to BDNF and Neurturin.


Asunto(s)
Factores de Transcripción de la Respuesta de Crecimiento Precoz/biosíntesis , Sistema de Señalización de MAP Quinasas/fisiología , Neuronas/metabolismo , Neurturina/fisiología , Simportadores/biosíntesis , Regulación hacia Arriba/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Factores de Transcripción de la Respuesta de Crecimiento Precoz/fisiología , Hipocampo/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/fisiología , Técnicas de Cultivo de Órganos , Simportadores/fisiología , Cotransportadores de K Cl
17.
Behav Brain Res ; 398: 112977, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33141075

RESUMEN

The use of endurance regimens could be improved by defining their respective effectiveness on aerobic fitness and brain health that remains controversial. We aimed at comparing work-matched high-intensity interval training (HIIT) with moderate-intensity continuous training (MICT) on aerobic performance and muscular plasticity markers in healthy rats. Cognitive functions and brain plasticity markers were also investigated following the 8-week training. Rats performed the incremental exercise test and behavioural tests before and after training at day 1 (D1), D15, D29 and D57. Key cerebral markers were assessed by Western blot and quantitative polymerase chain reaction to provide information on brain function related to angiogenesis, aerobic metabolism and neurotrophin activity at D59. Muscular protein levels involved in angiogenesis and aerobic metabolism were measured in both triceps brachii and soleus muscles. HIIT induced superior improvement of aerobic fitness compared to MICT, as indicated by enhancement of speed associated with lactate threshold (SLT) and maximal speed (Smax). In the triceps brachii muscle, markers of angiogenesis and aerobic activity were upregulated as well as myokines involved in neuroplasticity. Moreover, levels of key brain plasticity markers increased in the hippocampus after 8 weeks of HIIT, without improving cognitive functions. These findings might contribute to define physical exercise guidelines for maintaining brain health by highlighting the promising role of HIIT when using SLT for distinguishing low running speed from high running speed. Further studies are required to confirm these brain effects by exploring synaptic plasticity and neurogenesis mechanisms when exercise intensity is standardized and individualized.


Asunto(s)
Capacidad Cardiovascular/fisiología , Entrenamiento de Intervalos de Alta Intensidad , Hipocampo/fisiología , Neovascularización Fisiológica/fisiología , Plasticidad Neuronal/fisiología , Condicionamiento Físico Animal/fisiología , Carrera/fisiología , Animales , Conducta Animal/fisiología , Masculino , Ratas , Ratas Sprague-Dawley
18.
Front Cell Dev Biol ; 9: 673395, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124057

RESUMEN

Parkinson's disease (PD) is a pathological condition characterized by the aggregation and the resultant presence of intraneuronal inclusions termed Lewy bodies (LBs) and Lewy neurites which are mainly composed of fibrillar α-synuclein (α-syn) protein. Pathogenic aggregation of α-syn is identified as the major cause of LBs deposition. Several mutations in α-syn showing varied aggregation kinetics in comparison to the wild type (WT) α-syn are reported in PD (A30P, E46K, H 50Q, G51D, A53E, and A53T). Also, the cell-to-cell spread of pathological α-syn plays a significant role in PD development. Interestingly, it has also been suggested that the pathology of PD may begin in the gastrointestinal tract and spread via the vagus nerve (VN) to brain proposing the gut-brain axis of α-syn pathology in PD. Despite multiple efforts, the behavior and functions of this protein in normal and pathological states (specifically in PD) is far from understood. Furthermore, the etiological factors responsible for triggering aggregation of this protein remain elusive. This review is an attempt to collate and present latest information on α-syn in relation to its structure, biochemistry and biophysics of aggregation in PD. Current advances in therapeutic efforts toward clearing the pathogenic α-syn via autophagy/lysosomal flux are also reviewed and reported.

19.
J Neurosci ; 29(2): 313-27, 2009 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-19144832

RESUMEN

In human patients, cortical dysplasia produced by Doublecortin (DCX) mutations lead to mental retardation and intractable infantile epilepsies, but the underlying mechanisms are not known. DCX(-/-) mice have been generated to investigate this issue. However, they display no neocortical abnormality, lessening their impact on the field. In contrast, in utero knockdown of DCX RNA produces a morphologically relevant cortical band heterotopia in rodents. On this preparation we have now compared the neuronal and network properties of ectopic, overlying, and control neurons in an effort to identify how ectopic neurons generate adverse patterns that will impact cortical activity. We combined dynamic calcium imaging and anatomical and electrophysiological techniques and report now that DCX(-/-)EGFP(+)-labeled ectopic neurons that fail to migrate develop extensive axonal subcortical projections and retain immature properties, and most of them display a delayed maturation of GABA-mediated signaling. Cortical neurons overlying the heterotopia, in contrast, exhibit a massive increase of ongoing glutamatergic synaptic currents reflecting a strong reactive plasticity. Neurons in both experimental fields are more frequently coactive in coherent synchronized oscillations than control cortical neurons. In addition, both fields displayed network-driven oscillations during evoked epileptiform burst. These results show that migration disorders produce major alterations not only in neurons that fail to migrate but also in their programmed target areas. We suggest that this duality play a major role in cortical dysfunction of DCX brains.


Asunto(s)
Corteza Cerebral/anomalías , Modelos Animales de Enfermedad , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/patología , Red Nerviosa/fisiopatología , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Bicuculina/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/embriología , Corteza Cerebral/patología , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Electroporación/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Antagonistas del GABA/farmacología , Glutamato Descarboxilasa/metabolismo , Ácido Glutámico/farmacología , Proteínas Fluorescentes Verdes/genética , Humanos , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación/genética , Red Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/patología , Neuropéptidos/genética , Embarazo , Quinoxalinas/farmacología , ARN Interferente Pequeño/farmacología , Ratas , Ratas Wistar , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Valina/análogos & derivados , Valina/farmacología , Ácido gamma-Aminobutírico/farmacología
20.
J Neurochem ; 114(3): 795-809, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20477942

RESUMEN

A dominant mutation in the gene coding for the vesicle-associated membrane protein-associated protein B (VAPB) was associated with amyotrophic lateral sclerosis, a fatal paralytic disorder characterized by the selective loss of motoneurons in the brain and spinal cord. Adeno-associated viral vectors that we show to transduce up to 90% of motoneurons in vitro were used to model VAPB-associated neurodegenerative process. We observed that Adeno-associated viral-mediated over-expression of both wild-type and mutated form of human VAPB selectively induces death of primary motoneurons, albeit with different kinetics. We provide evidence that ER stress and impaired homeostatic regulation of calcium (Ca(2+)) are implicated in the death process. Finally, we found that completion of the motoneuron death program triggered by the over-expression of wild-type and mutant VAPB implicates calpains, caspase 12 and 3. Our viral-based in vitro model, which recapitulates the selective vulnerability of motoneurons to the presence of mutant VAPB and also to VAPB gene dosage effect, identifies aberrant Ca(2+) signals and ER-derived death pathways as important events in the motoneuron degenerative process.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Señalización del Calcio/fisiología , Dependovirus/genética , Retículo Endoplásmico/fisiología , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Neuronas Motoras/patología , Degeneración Nerviosa/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Señalización del Calcio/genética , Muerte Celular/genética , Muerte Celular/fisiología , Células Cultivadas , Retículo Endoplásmico/patología , Humanos , Proteínas de la Membrana/fisiología , Ratones , Neuronas Motoras/metabolismo , Mutación/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Transducción Genética/métodos , Proteínas de Transporte Vesicular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA