Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 31(22): 36273-36280, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017782

RESUMEN

The integration of compact high-bandwidth III-V active devices in a scalable manner is highly significant for Silicon-on-insulator (SOI) photonic integrated circuits. To address this, we demonstrate the integration of pre-fabricated 21 × 57 µm2 InGaAs photodetector (PD) coupons with a thickness of 675 nm to a 500 nm SOI platform using a direct bonding micro-transfer printing process. The common devices are coupled to the Si waveguides via butt, grating and evanescent coupling schemes with responsivities of 0.13, 0.3 and 0.6 A/W respectively, in line with simulations. The thin device facilitates simplified high-speed connections without the need for an interlayer dielectric. A back-to-back data communication rate of 50 Gb/s is achieved with on-off keying and with post processing of four-level pulse-amplitude modulation (PAM4) 100 Gb/s is realized. Potentially, around 1 million devices per 75 mm InP wafer can be attained. The integration of compact PDs exhibited in this work can be extended to modulators and lasers in the future.

2.
Opt Express ; 28(22): 32793-32801, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114956

RESUMEN

We report on single-mode C-band distributed feedback lasers fabricated through micro-transfer-printing of semiconductor optical amplifier coupons fabricated on a InP source wafer onto a silicon-on-insulator photonic circuit. The coupons are micro-transfer printed on quarter-wave shifted gratings defined in SiN deposited on the silicon waveguide. Alignment-tolerant adiabatic tapers are used to efficiently couple light from the hybrid III-V/Si waveguide to the Si waveguide circuit. 80 mA threshold current and a maximum single-sided waveguide-coupled output power above 6.9 mW is obtained at 20 °C. Single mode operation around 1558 nm with > 33 dB side mode suppression ratio is demonstrated. Micro-transfer printing-based heterogeneous integration is promising for the wafer-level integration of advanced laser sources on complex silicon photonic integrated circuit platforms without changing the foundry process flow.

3.
Opt Express ; 28(14): 21275-21285, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32680172

RESUMEN

We demonstrate waveguide-detector coupling through the integration of GaAs p-i-n photodiodes (PDs) on top of silicon nitride grating couplers (GCs) by means of transfer-printing. Both single device and arrayed printing is demonstrated. The photodiodes exhibit dark currents below 20 pA and waveguide-referred responsivities of up to 0.30 A/W at 2V reverse bias, corresponding to an external quantum efficiency of 47% at 860 nm. We have integrated the detectors on top of a 10-channel on-chip arrayed waveguide grating (AWG) spectrometer, made in the commercially available imec BioPIX-300 nm platform.

4.
Opt Express ; 26(7): 8821-8830, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29715844

RESUMEN

An electrically pumped DFB laser integrated on and coupled to a silicon waveguide circuit is demonstrated by transfer printing a 40 × 970 µm2 III-V coupon, defined on a III-V epitaxial wafer. A second-order grating defined in the silicon device layer with a period of 477 nm and a duty cycle of 75% was used for realizing single mode emission, while an adiabatic taper structure is used for coupling to the silicon waveguide layer. 18 mA threshold current and a maximum single-sided waveguide-coupled output power above 2 mW is obtained at 20°C. Single mode operation around 1550 nm with > 40 dB side mode suppression ratio (SMSR) is realized. This new integration approach allows for the very efficient use of the III-V material and the massively parallel integration of these coupons on a silicon photonic integrated circuit wafer. It also allows for the intimate integration of III-V opto-electronic components based on different epitaxial layer structures.

5.
Nano Lett ; 16(12): 7822-7828, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960504

RESUMEN

Hybrid plasmonic lasers provide deep subwavelength optical confinement, strongly enhanced light-matter interaction and together with nanoscale footprint promise new applications in optical communication, biosensing, and photolithography. The subwavelength hybrid plasmonic lasers reported so far often use bottom-up grown nanowires, nanorods, and nanosquares, making it difficult to integrate these devices into industry-relevant high density plasmonic circuits. Here, we report the first experimental demonstration of AlGaInP based, red-emitting hybrid plasmonic lasers at room temperature using lithography based fabrication processes. Resonant cavities with deep subwavelength 2D and 3D mode confinement of λ2/56 and λ3/199, respectively, are demonstrated. A range of cavity geometries (waveguides, rings, squares, and disks) show very low lasing thresholds of 0.6-1.8 mJ/cm2 with wide gain bandwidth (610 nm-685 nm), which are attributed to the heterogeneous geometry of the gain material, the optimized etching technique, and the strong overlap of the gain material with the plasmonic modes. Most importantly, we establish the connection between mode confinements and enhanced absorption and stimulated emission, which plays critical roles in maintaining low lasing thresholds at extremely small hybrid plasmonic cavities. Our results pave the way for the further integration of dense arrays of hybrid plasmonic lasers with optical and electronic technology platforms.

6.
Nano Lett ; 14(11): 6202-9, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25313827

RESUMEN

In this Letter, we present a new class of near-infrared photodetectors comprising Au nanorods-ZnO nanowire hybrid systems. Fabricated hybrid FET devices showed a large photoresponse under radiation wavelengths between 650 and 850 nm, accompanied by an "ultrafast" transient with a time scale of 250 ms, more than 1 order of magnitude faster than the ZnO response under radiation above band gap. The generated photocurrent is ascribed to plasmonic-mediated generation of hot electrons at the metal-semiconductor Schottky barrier. In the presented architecture, Au-nanorod-localized surface plasmons were used as active elements for generating and injecting hot electrons into the wide band gap ZnO nanowire, functioning as a passive component for charge collection. A detailed investigation of the hot electron generation and injection processes is discussed to explain the improved and extended performance of the hybrid device. The quantum efficiency measured at 650 nm was calculated to be approximately 3%, more than 30 times larger than values reported for equivalent metal/semiconductor planar photodetectors. The presented work is extremely promising for further development of novel miniaturized, tunable photodetectors and for highly efficient plasmonic energy conversion devices.

7.
J Mater Sci ; 58(23): 9547-9561, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323808

RESUMEN

We investigate different architectures for parabolic-graded InGaAs metamorphic buffers grown on GaAs using transmission electron microscopy techniques. The different architectures include InGaP and AlInGaAs/InGaP superlattices with different GaAs substrate misorientations and the inclusion of a strain balancing layer. Our results correlate: (i) the density and distribution of dislocations in the metamorphic buffer and (ii) the strain in the next layer preceding the metamorphic buffer, which varies for each type of architecture. Our findings indicate that the dislocation density in the lower region of the metamorphic layer ranges between 108 and 1010 cm-2, with AlInGaAs/InGaP superlattice samples exhibiting higher values compared to samples with InGaP films. We have identified two waves of dislocations, with threading dislocations typically located lower in the metamorphic buffer (~ 200-300 nm) in comparison to misfit dislocations. The measured localised strain values are in good agreement with theoretical predications. Overall, our results provide a systematic insight into the strain relaxation across different architectures, highlighting the various approaches that can be used to tailor strain in the active region of a metamorphic laser. Supplementary Information: The online version contains supplementary material available at 10.1007/s10853-023-08597-y.

8.
Sci Rep ; 12(1): 4723, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304526

RESUMEN

Generation of polarization-entangled photons from quantum dots via the biexciton-exciton recombination cascade is complicated by the presence of an energy splitting between the intermediate excitonic levels, which severely degrades the quality of the entangled photon source. In this paper we present a novel, conceptually simple and straightforward proposal for restoring the entanglement of said source by applying a cascade of time-dependent operations on the emitted photons. This is in striking contrast with the techniques usually employed, that act on the quantum emitter itself in order to remove the fine structure splitting at its root. The feasibility of the implementation with current technology is discussed, and the robustness of the proposed compensation scheme with respect to imperfections of the experimental apparatus is evaluated via a series of Monte Carlo simulations.

9.
J Mater Sci ; 57(34): 16383-16396, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36101839

RESUMEN

In this work, we report an extensive investigation via transmission electron microscopy (TEM) techniques of InGaAs/GaAs pyramidal quantum dots (PQDs), a unique site-controlled family of quantum emitters that have proven to be excellent sources of single and entangled photons. The most striking features of this system, originating from their peculiar fabrication process, include their inherently 3-dimensional nature and their interconnection to a series of nanostructures that are formed alongside them, such as quantum wells and quantum wires. We present structural and chemical data from cross-sectional and plan view samples of both single and stacked PQDs structures. Our findings identify (i) the shape of the dot, being hexagonal and not triangular as previously assumed, (ii) the chemical distribution at the facets and QD area, displaying clear Indium diffusion, and (iii) a near absence of Aluminium (from the AlAs marker) at the bottom of the growth profile. Our results shed light on previously unreported structural and chemical features of PQDs, which is of extreme relevance for further development of this family of quantum emitters. Supplementary Information: The online version contains supplementary material available at 10.1007/s10853-022-07654-2.

10.
Light Sci Appl ; 9: 180, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33110598

RESUMEN

Second harmonic generation and sum frequency generation (SHG and SFG) provide effective means to realize coherent light at desired frequencies when lasing is not easily achievable. They have found applications from sensing to quantum optics and are of particular interest for integrated photonics at communication wavelengths. Decreasing the footprints of nonlinear components while maintaining their high up-conversion efficiency remains a challenge in the miniaturization of integrated photonics. Here we explore lithographically defined AlGaInP nano(micro)structures/Al2O3/Ag as a versatile platform to achieve efficient SHG/SFG in both waveguide and resonant cavity configurations in both narrow- and broadband infrared (IR) wavelength regimes (1300-1600 nm). The effective excitation of highly confined hybrid plasmonic modes at fundamental wavelengths allows efficient SHG/SFG to be achieved in a waveguide of a cross-section of 113 nm × 250 nm, with a mode area on the deep subwavelength scale (λ 2/135) at fundamental wavelengths. Remarkably, we demonstrate direct visualization of SHG/SFG phase-matching evolution in the waveguides. This together with mode analysis highlights the origin of the improved SHG/SFG efficiency. We also demonstrate strongly enhanced SFG with a broadband IR source by exploiting multiple coherent SFG processes on 1 µm diameter AlGaInP disks/Al2O3/Ag with a conversion efficiency of 14.8% MW-1 which is five times the SHG value using the narrowband IR source. In both configurations, the hybrid plasmonic structures exhibit >1000 enhancement in the nonlinear conversion efficiency compared to their photonic counterparts. Our results manifest the potential of developing such nanoscale hybrid plasmonic devices for state-of-the-art on-chip nonlinear optics applications.

11.
Nanoscale Res Lett ; 11(1): 282, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27255902

RESUMEN

Strain-free epitaxial quantum dots (QDs) are fabricated by a combination of Al local droplet etching (LDE) of nanoholes in AlGaAs surfaces and subsequent hole filling with GaAs. The whole process is performed in a conventional molecular beam epitaxy (MBE) chamber. Autocorrelation measurements establish single-photon emission from LDE QDs with a very small correlation function g ((2))(0)≃ 0.01 of the exciton emission. Here, we focus on the influence of the initial hole depth on the QD optical properties with the goal to create deep holes suited for filling with more complex nanostructures like quantum dot molecules (QDM). The depth of droplet etched nanoholes is controlled by the droplet material coverage and the process temperature, where a higher coverage or temperature yields deeper holes. The requirements of high quantum dot uniformity and narrow luminescence linewidth, which are often found in applications, set limits to the process temperature. At high temperatures, the hole depths become inhomogeneous and the linewidth rapidly increases beyond 640 °C. With the present process technique, we identify an upper limit of 40-nm hole depth if the linewidth has to remain below 100 µeV. Furthermore, we study the exciton fine-structure splitting which is increased from 4.6 µeV in 15-nm-deep to 7.9 µeV in 35-nm-deep holes. As an example for the functionalization of deep nanoholes, self-aligned vertically stacked GaAs QD pairs are fabricated by filling of holes with 35 nm depth. Exciton peaks from stacked dots show linewidths below 100 µeV which is close to that from single QDs.

13.
Nanoscale Res Lett ; 6: 567, 2011 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22029752

RESUMEN

We present the results of a study of nitrogen incorporation in metalorganic-vapour-phase epitaxy-grown site-controlled quantum dots (QDs). We report for the first time on a significant incorporation (approximately 0.3%), producing a noteworthy red shift (at least 50 meV) in some of our samples. Depending on the level of nitrogen incorporation/exposure, strong modifications of the optical features are found (variable distribution of the emission homogeneity, fine-structure splitting, few-particle effects). We discuss our results, especially in relation to a specific reproducible sample which has noticeable features: the usual pattern of the excitonic transitions is altered and the fine-structure splitting is suppressed to vanishing values. Distinctively, nitrogen incorporation can be achieved without detriment to the optical quality, as confirmed by narrow linewidths and photon correlation spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA