Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 122, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351010

RESUMEN

Cells that are exposed to harmful genetic damage, either from internal or external sources, may undergo senescence if they are unable to repair their DNA. Senescence, characterized by a state of irreversible growth arrest, can spread to neighboring cells through a process known as the senescence-associated secretory phenotype (SASP). This phenomenon contributes to both aging and the development of cancer. The SASP comprises a variety of factors that regulate numerous functions, including the induction of secondary senescence, modulation of immune system activity, remodeling of the extracellular matrix, alteration of tissue structure, and promotion of cancer progression. Identifying key factors within the SASP is crucial for understanding the underlying mechanisms of senescence and developing effective strategies to counteract cellular senescence. Our research has specifically focused on investigating the role of IGFBP5, a component of the SASP observed in various experimental models and conditions.Through our studies, we have demonstrated that IGFBP5 actively contributes to promoting senescence and can induce senescence in neighboring cells. We have gained valuable insights into the mechanisms through which IGFBP5 exerts its pro-senescence effects. These mechanisms include its release following genotoxic stress, involvement in signaling pathways mediated by reactive oxygen species and prostaglandins, internalization via specialized structures called caveolae, and interaction with a specific protein known as RARα. By uncovering these mechanisms, we have advanced our understanding of the intricate role of IGFBP5 in the senescence process. The significance of IGFBP5 as a pro-aging factor stems from an in vivo study we conducted on patients undergoing Computer Tomography analysis. In these patients, we observed an elevation in circulating IGFBP5 levels in response to radiation-induced organismal stress.Globally, our findings highlight the potential of IGFBP5 as a promising therapeutic target for age-related diseases and cancer.


Asunto(s)
Senescencia Celular , Neoplasias , Humanos , Envejecimiento , Células Cultivadas , Senescencia Celular/genética , Neoplasias/metabolismo , Transducción de Señal/genética
2.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38542114

RESUMEN

Circulating microRNAs (c-miRNAs) are non-coding RNAs found in different bodily fluids and are highly investigated for their prognostic potential and biological role in cancer. In this narrative review, we provide an update of the last five years' published papers (2018-2023) on PubMed about c-miRNAs in cancer research. We aim to capture the latest research interests in terms of the highly studied cancers and the insights about c-miRNAs. Our analysis revealed that more than 150 papers focusing on c-miRNAs and cancer were published in the last five years. Among these, there was a high prevalence of papers on breast cancer (BC) and lung cancer (LC), which are estimated to be the most diagnosed cancers globally. Thus, we focus on the main evidence and research trends about c-miRNAs in BC and LC. We report evidence of the effectiveness of c-miRNAs in hot topics of cancer research, such as, early detection, therapeutic resistance, recurrence risk and novel detection platform approaches. Moreover, we look at the deregulated c-miRNAs shared among BC and LC papers, focusing on miR-21 and miR-145. Overall, these data clearly indicate that the role of c-miRNAs in cancer is still a hot topic for oncologic research and that blood is the most investigated matrix.


Asunto(s)
Neoplasias de la Mama , MicroARN Circulante , Neoplasias Pulmonares , MicroARNs , Humanos , Femenino , MicroARN Circulante/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias de la Mama/genética
3.
Cell Commun Signal ; 21(1): 262, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770897

RESUMEN

DNA damage resulting from genotoxic injury can initiate cellular senescence, a state characterized by alterations in cellular metabolism, lysosomal activity, and the secretion of factors collectively known as the senescence-associated secretory phenotype (SASP). Senescence can have beneficial effects on our bodies, such as anti-cancer properties, wound healing, and tissue development, which are attributed to the SASP produced by senescent cells in their intermediate stages. However, senescence can also promote cancer and aging, primarily due to the pro-inflammatory activity of SASP.Studying senescence is complex due to various factors involved. Genotoxic stimuli cause random damage to cellular macromolecules, leading to variations in the senescent phenotype from cell to cell, despite a shared program. Furthermore, senescence is a dynamic process that cannot be analyzed as a static endpoint, adding further complexity.Investigating SASP is particularly intriguing as it reveals how a senescence process triggered in a few cells can spread to many others, resulting in either positive or negative consequences for health. In our study, we conducted a meta-analysis of the protein content of SASP obtained from different research groups, including our own. We categorized the collected omic data based on: i) cell type, ii) harmful agent, and iii) senescence stage (early and late senescence).By employing Gene Ontology and Network analysis on the omic data, we identified common and specific features of different senescent phenotypes. This research has the potential to pave the way for the development of new senotherapeutic drugs aimed at combating the negative consequences associated with the senescence process. Video Abstract.


Asunto(s)
Neoplasias , Senoterapéuticos , Humanos , Secretoma , Envejecimiento , Senescencia Celular , Neoplasias/metabolismo , Fenotipo
4.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37511259

RESUMEN

The mucosal-dominant variant of pemphigus vulgaris (MPV) is an autoimmune disease characterized by oral mucosal blistering and circulating pathogenic IgG antibodies against desmoglein 3 (Dsg3), resulting in life-threatening bullae and erosion formation. Recently, microRNAs (miRNAs) have emerged as promising players in the diagnosis and prognosis of several pathological states. For the first time, we have identified a different expression profile of miRNAs isolated from plasma-derived exosomes (P-EVs) of MPV patients positive for antibodies against Dsg3 (Dsg3-positive) compared to healthy controls. Moreover, a dysregulated miRNA profile was confirmed in MPV tissue biopsies. In particular, a strong downregulation of the miR-148a-3p expression level in P-EVs of MPV patients compared to healthy controls was demonstrated. Bioinformatics prediction analysis identifies metalloproteinase-7 (MMP7) as a potential miR-148a-3p target. An in vitro acantholysis model revealed that the miR-148a-3p expression level was dramatically downregulated after treatment with Dsg3 autoantibodies, with a concomitant increase in MMP7 expression. The increased expression of MMP7 leads to the disruption of intercellular and/or extracellular matrix adhesion in an in vitro cellular model of MPV, with subsequent cell dissociation. Overexpression of miR-148a-3p prevented cell dissociation and regressed MMP7 upregulation. Our findings suggest a pivotal role of P-EV cargo in regulating molecular mechanisms involved in MPV pathogenesis and indicate them as potential MPV therapeutic targets.


Asunto(s)
MicroARNs , Pénfigo , Humanos , Pénfigo/genética , Pénfigo/diagnóstico , Regulación hacia Abajo/genética , Metaloproteinasa 7 de la Matriz/metabolismo , Desmogleína 3/genética , Desmogleína 3/metabolismo , Autoanticuerpos , MicroARNs/genética , MicroARNs/metabolismo , Vesícula , Mucosa Bucal/metabolismo
5.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362123

RESUMEN

This Special Issue aims to address the impact of cellular senescence on human biology, looking at both physiological and pathological processes [...].


Asunto(s)
Envejecimiento , Senescencia Celular , Humanos , Senescencia Celular/fisiología , Envejecimiento/fisiología
6.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36293005

RESUMEN

Two different types of adipose depots can be observed in mammals: white adipose tissue (WAT) and brown adipose tissue (BAT). The primary role of WAT is to deposit surplus energy in the form of triglycerides, along with many metabolic and hormonal activities; as thermogenic tissue, BAT has the distinct characteristic of using energy and glucose consumption as a strategy to maintain the core body temperature. Under specific stimuli-such as exercise, cold exposure, and drug treatment-white adipocytes can utilize their extraordinary flexibility to transdifferentiate into brown-like cells, called beige adipocytes, thereby acquiring new morphological and physiological characteristics. For this reason, the process is identified as the 'browning of WAT'. We evaluated the ability of some drugs, including GW501516, sildenafil, and rosiglitazone, to induce the browning process of adult white adipocytes obtained from differentiated mesenchymal stromal cells (MSCs). In addition, we broadened our investigation by evaluating the potential browning capacity of IRISIN, a myokine that is stimulated by muscular exercises. Our data indicate that IRISIN was effective in promoting the browning of white adipocytes, which acquire increased expression of UCP1, increased mitochondrial mass, and modification in metabolism, as suggested by an increase of mitochondrial oxygen consumption, primarily in presence of glucose as a nutrient. These promising browning agents represent an appealing focus in the therapeutic approaches to counteracting metabolic diseases and their associated obesity.


Asunto(s)
Adipocitos Blancos , Células Madre Mesenquimatosas , Animales , Adipocitos Blancos/metabolismo , Fibronectinas/metabolismo , Rosiglitazona/farmacología , Citrato de Sildenafil/farmacología , Médula Ósea/metabolismo , Metabolismo Energético , Termogénesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Células Madre Mesenquimatosas/metabolismo , Glucosa/metabolismo , Triglicéridos/metabolismo , Mamíferos/metabolismo
7.
Molecules ; 27(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35630602

RESUMEN

Huntington's disease (HD) is a dramatic neurodegenerative disorder caused by the abnormal expansion of a CAG triplet in the huntingtin gene, producing an abnormal protein. As it leads to the death of neurons in the cerebral cortex, the patients primarily present with neurological symptoms, but recently metabolic changes resulting from mitochondrial dysfunction have been identified as novel pathological features. The carnitine shuttle is a complex consisting of three enzymes whose function is to transport the long-chain fatty acids into the mitochondria. Here, its pharmacological modification was used to test the hypothesis that shifting metabolism to lipid oxidation exacerbates the HD symptoms. Behavioural and transcriptional analyses were carried out on HD Drosophila model, to evaluate the involvement of the carnitine cycle in this pathogenesis. Pharmacological inhibition of CPT1, the rate-limiting enzyme of the carnitine cycle, ameliorates the HD symptoms in Drosophila, likely acting on the expression of carnitine-related genes.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Carnitina , Enfermedad de Huntington , Animales , Carnitina/metabolismo , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Modelos Animales de Enfermedad , Drosophila , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/enzimología , Fenotipo
8.
Molecules ; 27(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35408602

RESUMEN

The management of periodontitis remains a vital clinical challenge due to the interplay between the microorganisms of the dental biofilm and the host inflammatory response leading to a degenerative process in the surrounding tissues. Quercetin (QUE), a natural flavonol found in many foods, including apples, onions and tea, has exhibited prolonged and strong antibiofilm and anti-inflammatory effects both in vitro and in vivo. However, its clinical application is limited by its poor stability and water solubility, as well as its low bioavailability. Thus, in the present study, electrospun polylactic acid (PLA) nanofibers loaded with different amounts (5−10% w/w) of QUE were produced to rapidly respond to the acidic microenvironment typical of periodontal pockets during periodontal disease. This strategy demonstrated that PLA-QUE membranes can act as a drug reservoir releasing high QUE concentrations in the presence of oral bacterial infection (pH < 5.5), and thus limiting Pseudomonas aeruginosa PAO1 and Streptococcus mutans biofilm maturation. In addition, released QUE exerts antioxidant and anti-inflammatory effects on P. gingivalis Lipopolysaccharide (LPS)-stimulated human gingival fibroblast (HGFs). The reported results confirmed that PLA-QUE membranes could inhibit subgingival biofilm maturation while reducing interleukin release, thereby limiting host inflammatory response. Overall, this study provided an effective pH-sensitive drug delivery system as a promising strategy for treating periodontitis.


Asunto(s)
Nanofibras , Periodontitis , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Humanos , Nanofibras/química , Periodontitis/tratamiento farmacológico , Poliésteres/química , Quercetina/química
9.
J Enzyme Inhib Med Chem ; 36(1): 2068-2079, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34565280

RESUMEN

Pompe disease is an inherited metabolic disorder due to the deficiency of the lysosomal acid α-glucosidase (GAA). The only approved treatment is enzyme replacement therapy with the recombinant enzyme (rhGAA). Further approaches like pharmacological chaperone therapy, based on the stabilising effect induced by small molecules on the target enzyme, could be a promising strategy. However, most known chaperones could be limited by their potential inhibitory effects on patient's enzymes. Here we report on the discovery of novel chaperones for rhGAA, L- and D-carnitine, and the related compound acetyl-D-carnitine. These drugs stabilise the enzyme at pH and temperature without inhibiting the activity and acted synergistically with active-site directed pharmacological chaperones. Remarkably, they enhanced by 4-fold the acid α-glucosidase activity in fibroblasts from three Pompe patients with added rhGAA. This synergistic effect of L-carnitine and rhGAA has the potential to be translated into improved therapeutic efficacy of ERT in Pompe disease.


Asunto(s)
Carnitina/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Lisosomas/efectos de los fármacos , Chaperonas Moleculares/farmacología , alfa-Glucosidasas/metabolismo , Regulación Alostérica/efectos de los fármacos , Carnitina/química , Relación Dosis-Respuesta a Droga , Inhibidores de Glicósido Hidrolasas/química , Humanos , Lisosomas/enzimología , Chaperonas Moleculares/química , Estructura Molecular , Relación Estructura-Actividad
10.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803589

RESUMEN

During their life span, cells have two possible states: a non-cycling, quiescent state (G0) and a cycling, activated state. Cells may enter a reversible G0 state of quiescence or, alternatively, they may undergo an irreversible G0 state. The latter may be a physiological differentiation or, following a stress event, a senescent status. Discrimination among the several G0 states represents a significant investigation, since quiescence, differentiation, and senescence are progressive phenomena with intermediate transitional stages. We used the expression of Ki67, RPS6, and beta-galactosidase to identify healthy cells that progressively enter and leave quiescence through G0-entry, G0 and G0-alert states. We then evaluated how cells may enter senescence following a genotoxic stressful event. We identified an initial stress stage with the expression of beta-galactosidase and Ki67 proliferation marker. Cells may recover from stress events or become senescent passing through early and late senescence states. Discrimination between quiescence and senescence was based on the expression of RPS6, a marker of active protein synthesis that is present in senescent cells but absent in quiescent cells. Even taking into account that fixed G0 states do not exist, our molecular algorithm may represent a method for identifying turning points of G0 transitional states that continuously change.


Asunto(s)
Ciclo Celular , Senescencia Celular , Antígeno Ki-67/metabolismo , Proteína S6 Ribosómica/metabolismo , Estrés Fisiológico , beta-Galactosidasa/metabolismo , Humanos , Modelos Biológicos , Fenotipo
11.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34769049

RESUMEN

Several investigations on senescence and its causative role in aging have underscored the importance of developing senotherapeutics, a field focused on killing senescent cells and/or preventing their accumulation within tissues. Using polyphenols in counteracting senescence may facilitate the development of senotherapeutics given their presence in the human diet, their confirmed tolerability and absence of severe side effects, and their role in preventing senescence and inducing the death of senescent cells. Against that background, we evaluated the effect of piceatannol, a natural polyphenol, on the senescence of mesenchymal stromal cells (MSCs), which play a key role in the body's homeostasis. Among our results, piceatannol reduced the number of senescent cells both after genotoxic stress that induced acute senescence and in senescent replicative cultures. Such senotherapeutics activity, moreover, promoted the recovery of cell proliferation and the stemness properties of MSCs. Altogether, our findings demonstrate piceatannol's effectiveness in counteracting senescence by targeting its associated pathways and detecting and affecting P53-dependent and P53-independent senescence. Our study thus suggests that, given piceatannol's various mechanisms to accomplish its pleiotropic activities, it may be able to counteract any senescent phenotypes.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Senoterapéuticos/farmacología , Estilbenos/farmacología , Envejecimiento/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Humanos
12.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669748

RESUMEN

Muse cells are adult stem cells that are present in the stroma of several organs and possess an enduring capacity to cope with endogenous and exogenous genotoxic stress. In cell therapy, the peculiar biological properties of Muse cells render them a possible natural alternative to mesenchymal stromal cells (MSCs) or to in vitro-generated pluripotent stem cells (iPSCs). Indeed, some studies have proved that Muse cells can survive in adverse microenvironments, such as those present in damaged/injured tissues. We performed an evaluation of Muse cells' proteome under basic conditions and followed oxidative stress treatment in order to identify ontologies, pathways, and networks that can be related to their enduring stress capacity. We executed the same analysis on iPSCs and MSCs, as a comparison. The Muse cells are enriched in several ontologies and pathways, such as endosomal vacuolar trafficking related to stress response, ubiquitin and proteasome degradation, and reactive oxygen scavenging. In Muse cells, the protein-protein interacting network has two key nodes with a high connectivity degree and betweenness: NFKB and CRKL. The protein NFKB is an almost-ubiquitous transcription factor related to many biological processes and can also have a role in protecting cells from apoptosis during exposure to a variety of stressors. CRKL is an adaptor protein and constitutes an integral part of the stress-activated protein kinase (SAPK) pathway. The identified pathways and networks are all involved in the quality control of cell components and may explain the stress resistance of Muse cells.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Proteoma/metabolismo , Proteómica , Estrés Fisiológico , Línea Celular , Daño del ADN , Ontología de Genes , Humanos , Células Madre Pluripotentes Inducidas/citología , Mapas de Interacción de Proteínas , Transducción de Señal
13.
Molecules ; 26(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34443457

RESUMEN

Curcumin extracted from the rhizome of Curcuma Longa has been used in therapeutic preparations for centuries in different parts of the world. However, its bioactivity is limited by chemical instability, water insolubility, low bioavailability, and extensive metabolism. In this study, the coaxial electrospinning technique was used to produce both poly (ε-caprolactone) (PCL)-curcumin and core-shell nanofibers composed of PCL and curcumin in the core and poly (lactic acid) (PLA) in the shell. Morphology and physical properties, as well as the release of curcumin were studied and compared with neat PCL, showing the formation of randomly oriented, defect-free cylindrical fibers with a narrow distribution of the dimensions. The antibacterial and antibiofilm potential, including the capacity to interfere with the quorum-sensing mechanism, was evaluated on Pseudomonas aeruginosa PAO1, and Streptococcus mutans, two opportunistic pathogenic bacteria frequently associated with infections. The reported results demonstrated the ability of the Curcumin-loading membranes to inhibit both PAO1 and S. mutans biofilm growth and activity, thus representing a promising solution for the prevention of biofilm-associated infections. Moreover, the high biocompatibility and the ability to control the oxidative stress of damaged tissue, make the synthesized membranes useful as scaffolds in tissue engineering regeneration, helping to accelerate the healing process.


Asunto(s)
Antiinfecciosos/farmacología , Biopelículas , Curcumina/farmacología , Infecciones/microbiología , Nanofibras/química , Ingeniería de Tejidos , Biopelículas/efectos de los fármacos , Compuestos de Bifenilo/química , Muerte Celular/efectos de los fármacos , Línea Celular , Liberación de Fármacos , Depuradores de Radicales Libres/farmacología , Humanos , Cinética , Pruebas de Sensibilidad Microbiana , Picratos/química , Poliésteres/química , Percepción de Quorum/efectos de los fármacos , Termogravimetría
14.
Cell Commun Signal ; 18(1): 118, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727501

RESUMEN

BACKGROUND: The term mesenchymal stromal cells (MSCs) designates an assorted cell population comprised of stem cells, progenitor cells, fibroblasts, and stromal cells. MSCs contribute to the homeostatic maintenance of many organs through paracrine and long-distance signaling. Tissue environment, in both physiological and pathological conditions, may affect the intercellular communication of MSCs. METHODS: We performed a secretome analysis of MSCs isolated from subcutaneous adipose tissue (sWAT) and visceral adipose tissue (vWAT), and from bone marrow (BM), of normal and obese mice. RESULTS: The MSCs isolated from tissues of healthy mice share a common core of released factors: components of cytoskeletal and extracellular structures; regulators of basic cellular functions, such as protein synthesis and degradation; modulators of endoplasmic reticulum stress; and counteracting oxidative stress. It can be hypothesized that MSC secretome beneficially affects target cells by the horizontal transfer of many released factors. Each type of MSC may exert specific signaling functions, which could be determined by looking at the many factors that are exclusively released from every MSC type. The vWAT-MSCs release factors that play a role in detoxification activity in response to toxic substances and drugs. The sWAT-MSC secretome contains proteins involved in in chondrogenesis, osteogenesis, and angiogenesis. Analysis of BM-MSC secretome revealed that these cells exert a signaling function by remodeling extracellular matrix structures, such as those containing glycosaminoglycans. Obesity status profoundly modified the secretome content of MSCs, impairing the above-described activity and promoting the release of inflammatory factors. CONCLUSION: We demonstrated that the content of MSC secretomes depends on tissue microenvironment and that pathological condition may profoundly alter its composition. Video abstract.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Especificidad de Órganos , Animales , Antígenos/metabolismo , Plaquetas/fisiología , Degranulación de la Célula , Dieta Alta en Grasa , Ontología de Genes , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Modelos Biológicos , Solubilidad
15.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33007849

RESUMEN

Environmental pollution has reached a global echo and represents a serious problem for human health. Air pollution encompasses a set of hazardous substances, such as particulate matter and heavy metals (e.g., cadmium, lead, and arsenic), and has a strong impact on the environment by affecting groundwater, soil, and air. An adaptive response to environmental cues is essential for human survival, which is associated with the induction of adaptive phenotypes. The epigenetic mechanisms regulating the expression patterns of several genes are promising candidates to provide mechanistic and prognostic insights into this. Micro-RNAs (miRNAs) fulfil these features given their ability to respond to environmental factors and their critical role in determining phenotypes. These molecules are present in extracellular fluids, and their expression patterns are organ-, tissue-, or cell-specific. Moreover, the experimental settings for their quantitative and qualitative analysis are robust, standardized, and inexpensive. In this review, we provide an update on the role of miRNAs as suitable tools for understanding the mechanisms behind the physiopathological response to toxicants and the prognostic value of their expression pattern associable with specific exposures. We look at the mechanistic evidence associable to the role of miRNAs in the processes leading to environmental-induced pulmonary disease (i.e., chronic obstructive pulmonary disease).


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Contaminación Ambiental/efectos adversos , Enfermedades Pulmonares Obstructivas/genética , MicroARNs/genética , Cadmio/administración & dosificación , Carbón Mineral/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Enfermedades Pulmonares Obstructivas/inducido químicamente , Enfermedades Pulmonares Obstructivas/epidemiología , Enfermedades Pulmonares Obstructivas/patología , Material Particulado/efectos adversos
16.
Int J Mol Sci ; 21(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272735

RESUMEN

The interest in dietary polyphenols in recent years has greatly increased due to their antioxidant bioactivity with preventive properties against chronic diseases. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and are able to neutralize the effects of oxidative stress, inflammation, and apoptosis. Interestingly, all these mechanisms are involved in neurodegeneration. Although polyphenols display differences in their effectiveness due to interindividual variability, recent studies indicated that bioactive polyphenols in food and beverages promote health and prevent age-related cognitive decline. Polyphenols have a poor bioavailability and their digestion by gut microbiota produces active metabolites. In fact, dietary bioactive polyphenols need to be modified by microbiota present in the intestine before being absorbed, and to exert health preventive effects by interacting with cellular signalling pathways. This literature review includes an evaluation of the literature in English up to December 2019 in PubMed and Web of Science databases. A total of 307 studies, consisting of research reports, review articles and articles were examined and 146 were included. The review highlights the role of bioactive polyphenols in neurodegeneration, with a particular emphasis on the cellular and molecular mechanisms that are modulated by polyphenols involved in protection from oxidative stress and apoptosis prevention.


Asunto(s)
Enfermedades Neurodegenerativas/tratamiento farmacológico , Polifenoles/farmacología , Polifenoles/uso terapéutico , Animales , Antioxidantes/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Inflamación/tratamiento farmacológico , Neuroprotección/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
17.
Int J Mol Sci ; 21(3)2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-32013257

RESUMEN

MicroRNAs (miRNAs) play a pivotal role in regulating the expression of genes involved in tumor development, invasion, and metastasis. In particular, microRNA-124 (miR-124) modulates the expression of carnitine palmitoyltransferase 1A (CPT1A) at the post-transcriptional level, impairing the ability of androgen-independent prostate cancer (PC3) cells to completely metabolize lipid substrates. However, the clinical translation of miRNAs requires the development of effective and safe delivery systems able to protect nucleic acids from degradation. Herein, biodegradable polyethyleneimine-functionalized polyhydroxybutyrate nanoparticles (PHB-PEI NPs) were prepared by aminolysis and used as cationic non-viral vectors to complex and deliver miR-124 in PC3 cells. Notably, the PHB-PEI NPs/miRNA complex effectively protected miR-124 from RNAse degradation, resulting in a 30% increase in delivery efficiency in PC3 cells compared to a commercial transfection agent (Lipofectamine RNAiMAX). Furthermore, the NPs-delivered miR-124 successfully impaired hallmarks of tumorigenicity, such as cell proliferation, motility, and colony formation, through CPT1A modulation. These results demonstrate that the use of PHB-PEI NPs represents a suitable and convenient strategy to develop novel nanomaterials with excellent biocompatibility and high transfection efficiency for cancer therapy.


Asunto(s)
Carcinogénesis/metabolismo , Movimiento Celular , Proliferación Celular , Portadores de Fármacos , MicroARNs , Nanopartículas/química , Neoplasias de la Próstata/metabolismo , Células CACO-2 , Carcinogénesis/patología , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Humanos , Células MCF-7 , Masculino , MicroARNs/química , MicroARNs/farmacología , Células PC-3 , Prohibitinas , Neoplasias de la Próstata/patología
18.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33050117

RESUMEN

A mismatch between ß-oxidation and the tricarboxylic acid cycle (TCA) cycle flux in mitochondria produces an accumulation of lipid metabolic intermediates, resulting in both blunted metabolic flexibility and decreased glucose utilization in the affected cells. The ability of the cell to switch to glucose as an energy substrate can be restored by reducing the reliance of the cell on fatty acid oxidation. The inhibition of the carnitine system, limiting the carnitine shuttle to the oxidation of lipids in the mitochondria, allows cells to develop a high plasticity to metabolic rewiring with a decrease in fatty acid oxidation and a parallel increase in glucose oxidation. We found that 3-(2,2,2-trimethylhydrazine)propionate (THP), which is able to reduce cellular carnitine levels by blocking both carnitine biosynthesis and the cell membrane carnitine/organic cation transporter (OCTN2), was reported to improve mitochondrial dysfunction in several diseases, such as Huntington's disease (HD). Here, new THP-derived carnitine-lowering agents (TCL), characterized by a high affinity for the OCTN2 with a minimal effect on carnitine synthesis, were developed, and their biological activities were evaluated in both in vitro and in vivo HD models. Certain compounds showed promising biological activities: reducing protein aggregates in HD cells, ameliorating motility defects, and increasing the lifespan of HD Drosophila melanogaster.


Asunto(s)
Drosophila melanogaster/efectos de los fármacos , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/metabolismo , Longevidad/efectos de los fármacos , Metilhidrazinas/farmacología , Miembro 5 de la Familia 22 de Transportadores de Solutos/antagonistas & inhibidores , Miembro 5 de la Familia 22 de Transportadores de Solutos/metabolismo , Animales , Carnitina/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Evaluación Preclínica de Medicamentos/métodos , Humanos , Ratones , Simulación del Acoplamiento Molecular , Agregación Patológica de Proteínas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Miembro 5 de la Familia 22 de Transportadores de Solutos/genética , Transfección , Resultado del Tratamiento
19.
Molecules ; 25(12)2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545546

RESUMEN

Chestnut seeds are used for fresh consumption and for the industrial preparation of derivatives, such as chestnut flour. During industrial processing, large amounts of by-products are generally produced, such as leaves, flowers, shells and burs. In the present study, chestnut shells were extracted by boiling water in order to obtain polyphenol-rich extracts. Moreover, for the removal or non-phenolic compounds, a separation by preparative reverse phase chromatography in ten fractions was carried out. The richest fractions in terms of phenolic content were characterized by means of untargeted high-resolution mass spectrometric analysis together with a dedicated and customized data processing workflow. A total of 243 flavonoids, phenolic acids, proanthocyanidins and ellagitannins were tentatively identified in the five richest fractions. Due its high phenolic content (450.03 µg GAE per mg of fraction), one tumor cell line (DU 145) and one normal prostate epithelial cell line (PNT2) were exposed to increasing concentration of fraction 3 dry extract for 24, 48 and 72 h. Moreover, for DU 145 cell lines, increase of apoptotic cells and perturbation of cell cycle was demonstrated for the same extract. Those outcomes suggest that chestnut industrial by-products could be potentially employed as a source of bioresources.


Asunto(s)
Fagaceae/química , Nueces/química , Extractos Vegetales/farmacología , Antioxidantes/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Flavonoides/química , Humanos , Masculino , Espectrometría de Masas , Fenoles/química , Extractos Vegetales/química , Polifenoles/química , Próstata/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Semillas/química
20.
J Cell Physiol ; 234(5): 5807-5826, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30317573

RESUMEN

Metabolic syndrome (MetS) is defined as the co-occurrence of metabolic risk factors that includes insulin resistance, hyperinsulinemia, impaired glucose tolerance, type 2 diabetes mellitus, dyslipidemia, and visceral obesity. The clinical significance of MetS consists of identifying a subgroup of patients sharing a common physiopathological state predisposing to chronic diseases. Clinical and scientific studies pinpoint lifestyle modification as an effective strategy aiming to reduce several features accountable for the risk of MetS onset. Among the healthy dietary patterns, the Mediterranean diet (MedDiet) emerges in terms of beneficial properties associated with longevity. Current evidence highlights the protective effect exerted by MedDiet on the different components of MetS. Interestingly, the effect exerted by polyphenols contained within the representative MedDiet components (i.e., olive oil, red wine, and nuts) seems to be accountable for the beneficial properties associated to this dietary pattern. In this review, we aim to summarize the principal evidence regarding the effectiveness of MedDiet-polyphenols in preventing or delaying the physiopathological components accountable for MetS onset. These findings may provide useful insights concerning the health properties of MedDiet-polyphenols as well as the novel targets destined to a tailored approach to MetS.


Asunto(s)
Dieta Saludable , Dieta Mediterránea , Síndrome Metabólico/prevención & control , Polifenoles/administración & dosificación , Conducta de Reducción del Riesgo , Restricción Calórica , Humanos , Inflamación/sangre , Inflamación/epidemiología , Inflamación/fisiopatología , Inflamación/prevención & control , Resistencia a la Insulina , Síndrome Metabólico/sangre , Síndrome Metabólico/epidemiología , Síndrome Metabólico/fisiopatología , Estado Nutricional , Valor Nutritivo , Obesidad/sangre , Obesidad/epidemiología , Obesidad/fisiopatología , Obesidad/prevención & control , Factores Protectores , Medición de Riesgo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA