Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(16): 3414-3426.e16, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541198

RESUMEN

Lateral transduction (LT) is the process by which temperate phages mobilize large sections of bacterial genomes. Despite its importance, LT has only been observed during prophage induction. Here, we report that superantigen-carrying staphylococcal pathogenicity islands (SaPIs) employ a related but more versatile and complex mechanism of gene transfer to drive chromosomal hypermobility while self-transferring with additional virulence genes from the host. We found that after phage infection or prophage induction, activated SaPIs form concatamers in the bacterial chromosome by switching between parallel genomic tracks in replication bubbles. This dynamic life cycle enables SaPIbov1 to piggyback its LT of staphylococcal pathogenicity island vSaα, which encodes an array of genes involved in host-pathogen interactions, allowing both islands to be mobilized intact and transferred in a single infective particle. Our findings highlight previously unknown roles of pathogenicity islands in bacterial virulence and show that their evolutionary impact extends beyond the genes they carry.


Asunto(s)
Islas Genómicas , Fagos de Staphylococcus , Staphylococcus , Genoma Bacteriano , Staphylococcus/genética , Staphylococcus/patogenicidad , Virulencia , Transducción Genética
2.
Cell ; 185(17): 3248-3262.e20, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35985290

RESUMEN

Bacteria encode sophisticated anti-phage systems that are diverse and versatile and display high genetic mobility. How this variability and mobility occurs remains largely unknown. Here, we demonstrate that a widespread family of pathogenicity islands, the phage-inducible chromosomal islands (PICIs), carry an impressive arsenal of defense mechanisms, which can be disseminated intra- and inter-generically by helper phages. These defense systems provide broad immunity, blocking not only phage reproduction, but also plasmid and non-cognate PICI transfer. Our results demonstrate that phages can mobilize PICI-encoded immunity systems to use them against other mobile genetic elements, which compete with the phages for the same bacterial hosts. Therefore, despite the cost, mobilization of PICIs may be beneficial for phages, PICIs, and bacteria in nature. Our results suggest that PICIs are important players controlling horizontal gene transfer and that PICIs and phages establish mutualistic interactions that drive bacterial ecology and evolution.


Asunto(s)
Bacteriófagos , Islas Genómicas , Bacterias/genética , Bacteriófagos/genética , Transferencia de Gen Horizontal , Sistema Inmunológico , Plásmidos
3.
Mol Cell ; 74(1): 59-72.e3, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30745087

RESUMEN

Bacillus phages use a communication system, termed "arbitrium," to coordinate lysis-lysogeny decisions. Arbitrium communication is mediated by the production and secretion of a hexapeptide (AimP) during lytic cycle. Once internalized, AimP reduces the expression of the negative regulator of lysogeny, AimX, by binding to the transcription factor, AimR, promoting lysogeny. We have elucidated the crystal structures of AimR from the Bacillus subtilis SPbeta phage in its apo form, bound to its DNA operator and in complex with AimP. AimR presents intrinsic plasticity, sharing structural features with the RRNPP quorum-sensing family. Remarkably, AimR binds to an unusual operator with a long spacer that interacts nonspecifically with the receptor TPR domain, while the HTH domain canonically recognizes two inverted repeats. AimP stabilizes a compact conformation of AimR that approximates the DNA-recognition helices, preventing AimR binding to the aimX promoter region. Our results establish the molecular basis of the arbitrium communication system.


Asunto(s)
Fagos de Bacillus/metabolismo , Lisogenia , Proteínas Virales/metabolismo , Fagos de Bacillus/genética , Bacillus subtilis/virología , ADN/metabolismo , Regulación Viral de la Expresión Génica , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Transducción de Señal , Relación Estructura-Actividad , Proteínas Virales/química , Proteínas Virales/genética
4.
Mol Cell ; 75(5): 1020-1030.e4, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31350119

RESUMEN

Phage-inducible chromosomal islands (PICIs) represent a novel and universal class of mobile genetic elements, which have broad impact on bacterial virulence. In spite of their relevance, how the Gram-negative PICIs hijack the phage machinery for their own specific packaging and how they block phage reproduction remains to be determined. Using genetic and structural analyses, we solve the mystery here by showing that the Gram-negative PICIs encode a protein that simultaneously performs these processes. This protein, which we have named Rpp (for redirecting phage packaging), interacts with the phage terminase small subunit, forming a heterocomplex. This complex is unable to recognize the phage DNA, blocking phage packaging, but specifically binds to the PICI genome, promoting PICI packaging. Our studies reveal the mechanism of action that allows PICI dissemination in nature, introducing a new paradigm in the understanding of the biology of pathogenicity islands and therefore of bacterial pathogen evolution.


Asunto(s)
Bacteriófagos/fisiología , ADN Viral/metabolismo , Escherichia coli/virología , Islas Genómicas , Ensamble de Virus/fisiología , ADN Viral/genética , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
Annu Rev Microbiol ; 75: 563-581, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34343015

RESUMEN

Temperate bacteriophages (phages) are viruses of bacteria. Upon infection of a susceptible host, a temperate phage can establish either a lytic cycle that kills the host or a lysogenic cycle as a stable prophage. The life cycle pursued by an infecting temperate phage can have a significant impact not only on the individual host bacterium at the cellular level but also on bacterial communities and evolution in the ecosystem. Thus, understanding the decision processes of temperate phages is crucial. This review delves into the molecular mechanisms behind lysis-lysogeny decision-making in Gram-positive phages. We discuss a variety of molecular mechanisms and the genetic organization of these well-understood systems. By elucidating the strategies used by phages to make lysis-lysogeny decisions, we can improve our understanding of phage-host interactions, which is crucial for a variety of studies including bacterial evolution, community and ecosystem diversification, and phage therapeutics.


Asunto(s)
Bacteriófagos , Lisogenia , Bacterias/genética , Bacteriófagos/genética , Ecosistema
6.
Nucleic Acids Res ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884209

RESUMEN

Generalized transduction is pivotal in bacterial evolution but lacks comprehensive understanding regarding the facilitating features and variations among phages. We addressed this gap by sequencing and comparing the transducing particle content of three different Salmonella Typhimurium phages (i.e. Det7, ES18 and P22) that share a headful packaging mechanism that is typically initiated from a cognate pac site within the phage chromosome. This revealed substantial disparities in both the extent and content of transducing particles among these phages. While Det7 outperformed ES18 in terms of relative number of transducing particles, both phages contrasted with P22 in terms of content. In fact, we found evidence for the presence of conserved P22 pac-like sequences in the host chromosome that direct tremendously increased packaging and transduction frequencies of downstream regions by P22. More specifically, a ca. 561 kb host region between oppositely oriented pac-like sequences in the purF and minE loci was identified as highly packaged and transduced during both P22 prophage induction and lytic infection. Our findings underscore the evolution of phage transducing capacity towards attenuation, promiscuity or directionality, and suggest that pac-like sequences in the host chromosome could become selected as sites directing high frequency of transduction.

7.
Nucleic Acids Res ; 51(6): 2759-2777, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36869669

RESUMEN

Bacteriophage-bacteria interactions are affected by phage satellites, elements that exploit phages for transfer between bacteria. Satellites can encode defense systems, antibiotic resistance genes, and virulence factors, but their number and diversity are unknown. We developed SatelliteFinder to identify satellites in bacterial genomes, detecting the four best described families: P4-like, phage inducible chromosomal islands (PICI), capsid-forming PICI, and PICI-like elements (PLE). We vastly expanded the number of described elements to ∼5000, finding bacterial genomes with up to three different families of satellites. Most satellites were found in Proteobacteria and Firmicutes, but some are in novel taxa such as Actinobacteria. We characterized the gene repertoires of satellites, which are variable in size and composition, and their genomic organization, which is very conserved. Phylogenies of core genes in PICI and cfPICI indicate independent evolution of their hijacking modules. There are few other homologous core genes between other families of satellites, and even fewer homologous to phages. Hence, phage satellites are ancient, diverse, and probably evolved multiple times independently. Given the many bacteria infected by phages that still lack known satellites, and the recent proposals for novel families, we speculate that we are at the beginning of the discovery of massive numbers and types of satellites.


Asunto(s)
Bacterias , Bacteriófagos , Bacterias/genética , Bacterias/virología , Bacteriófagos/genética , Proteínas de la Cápside/genética , Genoma Bacteriano , Filogenia
8.
PLoS Genet ; 18(3): e1010146, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35344558

RESUMEN

Phage-inducible chromosomal islands (PICIs) are a widespread family of highly mobile genetic elements that disseminate virulence and toxin genes among bacterial populations. Since their life cycle involves induction by helper phages, they are important players in phage evolution and ecology. PICIs can interfere with the lifecycle of their helper phages at different stages resulting frequently in reduced phage production after infection of a PICI-containing strain. Since phage defense systems have been recently shown to be beneficial for the acquisition of exogenous DNA via horizontal gene transfer, we hypothesized that PICIs could provide a similar benefit to their hosts and tested the impact of PICIs in recipient strains on host cell viability, phage propagation and transfer of genetic material. Here we report an important role for PICIs in bacterial evolution by promoting the survival of phage-mediated transductants of chromosomal or plasmid DNA. The presence of PICIs generates favorable conditions for population diversification and the inheritance of genetic material being transferred, such as antibiotic resistance and virulence genes. Our results show that by interfering with phage reproduction, PICIs can protect the bacterial population from phage attack, increasing the overall survival of the bacterial population as well as the transduced cells. Moreover, our results also demonstrate that PICIs reduce the frequency of lysogenization after temperate phage infection, creating a more genetically diverse bacterial population with increased bet-hedging opportunities to adapt to new niches. In summary, our results identify a new role for the PICIs and highlight them as important drivers of bacterial evolution.


Asunto(s)
Bacteriófagos , Bacterias/genética , Bacteriófagos/genética , Transferencia de Gen Horizontal/genética , Islas Genómicas/genética , Reproducción
9.
Nucleic Acids Res ; 50(19): 11109-11127, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36200825

RESUMEN

Mobile genetic elements control their life cycles by the expression of a master repressor, whose function must be disabled to allow the spread of these elements in nature. Here, we describe an unprecedented repression-derepression mechanism involved in the transfer of Staphylococcus aureus pathogenicity islands (SaPIs). Contrary to the classical phage and SaPI repressors, which are dimers, the SaPI1 repressor StlSaPI1 presents a unique tetrameric conformation never seen before. Importantly, not just one but two tetramers are required for SaPI1 repression, which increases the novelty of the system. To derepress SaPI1, the phage-encoded protein Sri binds to and induces a conformational change in the DNA binding domains of StlSaPI1, preventing the binding of the repressor to its cognate StlSaPI1 sites. Finally, our findings demonstrate that this system is not exclusive to SaPI1 but widespread in nature. Overall, our results characterize a novel repression-induction system involved in the transfer of MGE-encoded virulence factors in nature.


Asunto(s)
Islas Genómicas , Fagos de Staphylococcus , Islas Genómicas/genética , Fagos de Staphylococcus/genética , Staphylococcus aureus/genética
10.
PLoS Pathog ; 17(5): e1009606, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34015034

RESUMEN

The emergence of new pathogens is a major threat to public and veterinary health. Changes in bacterial habitat such as a switch in host or disease tropism are typically accompanied by genetic diversification. Staphylococcus aureus is a multi-host bacterial species associated with human and livestock infections. A microaerophilic subspecies, Staphylococcus aureus subsp. anaerobius, is responsible for Morel's disease, a lymphadenitis restricted to sheep and goats. However, the evolutionary history of S. aureus subsp. anaerobius and its relatedness to S. aureus are unknown. Population genomic analyses of clinical S. aureus subsp. anaerobius isolates revealed a highly conserved clone that descended from a S. aureus progenitor about 1000 years ago before differentiating into distinct lineages that contain African and European isolates. S. aureus subsp. anaerobius has undergone limited clonal expansion, with a restricted population size, and an evolutionary rate 10-fold slower than S. aureus. The transition to its current restricted ecological niche involved acquisition of a pathogenicity island encoding a ruminant host-specific effector of abscess formation, large chromosomal re-arrangements, and the accumulation of at least 205 pseudogenes, resulting in a highly fastidious metabolism. Importantly, expansion of ~87 insertion sequences (IS) located largely in intergenic regions provided distinct mechanisms for the control of expression of flanking genes, including a novel mechanism associated with IS-mediated anti-anti-sense decoupling of ancestral gene repression. Our findings reveal the remarkable evolutionary trajectory of a host-restricted bacterial pathogen that resulted from extensive remodelling of the S. aureus genome through an array of diverse mechanisms in parallel.


Asunto(s)
Genoma Bacteriano/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus/genética , Animales , Evolución Biológica , Ecosistema , Genómica , Humanos , Ganado , Filogenia , Transcriptoma , Secuenciación Completa del Genoma
11.
Mol Cell ; 57(1): 138-49, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25498143

RESUMEN

In recent decades, the notorious pathogen Staphylococcus aureus has become progressively more contagious, more virulent, and more resistant to antibiotics. This implies a rather dynamic evolutionary capability, representing a remarkable level of genomic plasticity, most probably maintained by horizontal gene transfer. Here we report that the staphylococcal pathogenicity islands have a dual role in gene transfer: they not only mediate their own transfer, but they can independently direct the transfer of unlinked chromosomal segments containing virulence genes. While transfer of the island itself requires specific helper phages, transfer of unlinked chromosomal segments does not, so potentially any pac-type phage will serve. These results reveal that SaPIs can increase the horizontal exchange of accessory genes associated with disease and may shape pathogen genomes beyond the confines of their attachment sites.


Asunto(s)
Cromosomas Bacterianos/química , Transferencia de Gen Horizontal , Genes Bacterianos , Islas Genómicas , Staphylococcus aureus/genética , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Profagos/genética , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Infecciones Estafilocócicas/transmisión , Fagos de Staphylococcus/genética , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/virología , Virulencia
12.
PLoS Pathog ; 15(7): e1007888, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31276485

RESUMEN

Temperate phages are bacterial viruses that as part of their life cycle reside in the bacterial genome as prophages. They are found in many species including most clinical strains of the human pathogens, Staphylococcus aureus and Salmonella enterica serovar Typhimurium. Previously, temperate phages were considered as only bacterial predators, but mounting evidence point to both antagonistic and mutualistic interactions with for example some temperate phages contributing to virulence by encoding virulence factors. Here we show that generalized transduction, one type of bacterial DNA transfer by phages, can create conditions where not only the recipient host but also the transducing phage benefit. With antibiotic resistance as a model trait we used individual-based models and experimental approaches to show that antibiotic susceptible cells become resistant to both antibiotics and phage by i) integrating the generalized transducing temperate phages and ii) acquiring transducing phage particles carrying antibiotic resistance genes obtained from resistant cells in the environment. This is not observed for non-generalized transducing temperate phages, which are unable to package bacterial DNA, nor for generalized transducing virulent phages that do not form lysogens. Once established, the lysogenic host and the prophage benefit from the existence of transducing particles that can shuffle bacterial genes between lysogens and for example disseminate resistance to antibiotics, a trait not encoded by the phage. This facilitates bacterial survival and leads to phage population growth. We propose that generalized transduction can function as a mutualistic trait where temperate phages cooperate with their hosts to survive in rapidly-changing environments. This implies that generalized transduction is not just an error in DNA packaging but is selected for by phages to ensure their survival.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/patogenicidad , Transducción Genética , Bacteriófagos/fisiología , Simulación por Computador , Empaquetamiento del ADN/genética , Farmacorresistencia Bacteriana/genética , Evolución Molecular , Humanos , Lisogenia/genética , Modelos Biológicos , Profagos/genética , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/virología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/virología , Virulencia/genética
13.
Mol Cell ; 49(5): 947-58, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23333307

RESUMEN

dUTPases (Duts) have emerged as promising regulatory molecules controlling relevant cellular processes. However, the mechanism underlying this regulatory function remains enigmatic. Using staphylococcal pathogenicity island (SaPI) repression as a model, we report here that phage Duts induce the transfer of SaPI-encoded virulence factors by switching between active (dUTP-bound) and inactive (apo state) conformations, a conversion catalyzed by their intrinsic dUTPase activity. Crystallographic and mutagenic analyses demonstrate that binding to dUTP reorders the C-terminal motif V of the phage-encoded Duts, rendering these proteins into the active conformation required for SaPI derepression. By contrast, the conversion to the apo state conformation by hydrolysis of the bound dUTP generates a protein that is unable to induce the SaPI cycle. Because none of the requirements involving Duts in SaPI transfer are exclusive to the phage-encoded proteins, we propose that Duts are widespread cellular regulators acting in a manner analogous to the eukaryotic G proteins.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Islas Genómicas/genética , Pirofosfatasas/genética , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Proteínas Virales/genética , Sitios de Unión , Proteínas de Unión al GTP/genética , Modelos Moleculares , Estructura Terciaria de Proteína , Pirofosfatasas/metabolismo , Staphylococcus aureus/metabolismo , Especificidad por Sustrato , Proteínas Virales/metabolismo , Virulencia/genética
14.
PLoS Pathog ; 13(9): e1006581, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28892519

RESUMEN

The dUTPase (Dut) enzymes, encoded by almost all free-living organisms and some viruses, prevent the misincorporation of uracil into DNA. We previously proposed that trimeric Duts are regulatory proteins involved in different cellular processes; including the phage-mediated transfer of the Staphylococcus aureus pathogenicity island SaPIbov1. Recently, it has been shown that the structurally unrelated dimeric Dut encoded by phage ϕNM1 is similarly able to mobilize SaPIbov1, suggesting dimeric Duts could also be regulatory proteins. How this is accomplished remains unsolved. Here, using in vivo, biochemical and structural approaches, we provide insights into the signaling mechanism used by the dimeric Duts to induce the SaPIbov1 cycle. As reported for the trimeric Duts, dimeric Duts contain an extremely variable region, here named domain VI, which is involved in the regulatory capacity of these enzymes. Remarkably, our results also show that the dimeric Dut signaling mechanism is modulated by dUTP, as with the trimeric Duts. Overall, our results demonstrate that although unrelated both in sequence and structure, dimeric and trimeric Duts control SaPI transfer by analogous mechanisms, representing a fascinating example of convergent evolution. This conserved mode of action highlights the biological significance of Duts as regulatory molecules.


Asunto(s)
Multimerización de Proteína , Pirofosfatasas/metabolismo , Staphylococcus aureus/enzimología , Secuencia de Aminoácidos/fisiología , Bacteriófagos/efectos de los fármacos , Bacteriófagos/genética , Sitios de Unión/fisiología , Nucleótidos de Desoxiuracil/metabolismo , Islas Genómicas , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos
15.
Nucleic Acids Res ; 45(11): 6507-6519, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28475766

RESUMEN

DNA-single strand annealing proteins (SSAPs) are recombinases frequently encoded in the genome of many bacteriophages. As SSAPs can promote homologous recombination among DNA substrates with an important degree of divergence, these enzymes are involved both in DNA repair and in the generation of phage mosaicisms. Here, analysing Sak and Sak4 as representatives of two different families of SSAPs present in phages infecting the clinically relevant bacterium Staphylococcus aureus, we demonstrate for the first time that these enzymes are absolutely required for phage reproduction. Deletion of the genes encoding these enzymes significantly reduced phage replication and the generation of infectious particles. Complementation studies revealed that these enzymes are required both in the donor (after prophage induction) and in the recipient strain (for infection). Moreover, our results indicated that to perform their function SSAPs require the activity of their cognate single strand binding (Ssb) proteins. Mutational studies demonstrated that the Ssb proteins are also required for phage replication, both in the donor and recipient strain. In summary, our results expand the functions attributed to the Sak and Sak4 proteins, and demonstrate that both SSAPs and Ssb proteins are essential for the life cycle of temperate staphylococcal phages.


Asunto(s)
Bacteriófagos/fisiología , Recombinasas/fisiología , Staphylococcus aureus/virología , Proteínas Virales/fisiología , Replicación Viral , Replicación del ADN , Proteínas de Unión al ADN/fisiología , Mutación
16.
PLoS Pathog ; 12(6): e1005711, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27327765

RESUMEN

Biofilms are communities of bacteria that grow encased in an extracellular matrix that often contains proteins. The spatial organization and the molecular interactions between matrix scaffold proteins remain in most cases largely unknown. Here, we report that Bap protein of Staphylococcus aureus self-assembles into functional amyloid aggregates to build the biofilm matrix in response to environmental conditions. Specifically, Bap is processed and fragments containing at least the N-terminus of the protein become aggregation-prone and self-assemble into amyloid-like structures under acidic pHs and low concentrations of calcium. The molten globule-like state of Bap fragments is stabilized upon binding of the cation, hindering its self-assembly into amyloid fibers. These findings define a dual function for Bap, first as a sensor and then as a scaffold protein to promote biofilm development under specific environmental conditions. Since the pH-driven multicellular behavior mediated by Bap occurs in coagulase-negative staphylococci and many other bacteria exploit Bap-like proteins to build a biofilm matrix, the mechanism of amyloid-like aggregation described here may be widespread among pathogenic bacteria.


Asunto(s)
Proteínas Amiloidogénicas/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Animales , Modelos Animales de Enfermedad , Immunoblotting , Ratones , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo
17.
Nucleic Acids Res ; 44(11): 5457-69, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27112567

RESUMEN

We have recently proposed that the trimeric staphylococcal phage encoded dUTPases (Duts) are signaling molecules that act analogously to eukaryotic G-proteins, using dUTP as a second messenger. To perform this regulatory role, the Duts require their characteristic extra motif VI, present in all the staphylococcal phage coded trimeric Duts, as well as the strongly conserved Dut motif V. Recently, however, an alternative model involving Duts in the transfer of the staphylococcal islands (SaPIs) has been suggested, questioning the implication of motifs V and VI. Here, using state-of the-art techniques, we have revisited the proposed models. Our results confirm that the mechanism by which the Duts derepress the SaPI cycle depends on dUTP and involves both motifs V and VI, as we have previously proposed. Surprisingly, the conserved Dut motif IV is also implicated in SaPI derepression. However, and in agreement with the proposed alternative model, the dUTP inhibits rather than inducing the process, as we had initially proposed. In summary, our results clarify, validate and establish the mechanism by which the Duts perform regulatory functions.


Asunto(s)
Multimerización de Proteína , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Staphylococcus aureus/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Islas Genómicas , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Pirofosfatasas/genética , Proteínas Recombinantes de Fusión/metabolismo , Staphylococcus aureus/genética , Relación Estructura-Actividad
18.
PLoS Genet ; 11(10): e1005609, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26495848

RESUMEN

Virus satellites are widespread subcellular entities, present both in eukaryotic and in prokaryotic cells. Their modus vivendi involves parasitism of the life cycle of their inducing helper viruses, which assures their transmission to a new host. However, the evolutionary and ecological implications of satellites on helper viruses remain unclear. Here, using staphylococcal pathogenicity islands (SaPIs) as a model of virus satellites, we experimentally show that helper viruses rapidly evolve resistance to their virus satellites, preventing SaPI proliferation, and SaPIs in turn can readily evolve to overcome phage resistance. Genomic analyses of both these experimentally evolved strains as well as naturally occurring bacteriophages suggest that the SaPIs drive the coexistence of multiple alleles of the phage-coded SaPI inducing genes, as well as sometimes selecting for the absence of the SaPI depressing genes. We report similar (accidental) evolution of resistance to SaPIs in laboratory phages used for Staphylococcus aureus typing and also obtain the same qualitative results in both experimental evolution and phylogenetic studies of Enterococcus faecalis phages and their satellites viruses. In summary, our results suggest that helper and satellite viruses undergo rapid coevolution, which is likely to play a key role in the evolution and ecology of the viruses as well as their prokaryotic hosts.


Asunto(s)
Bacteriófagos/genética , Evolución Biológica , Virus Helper/genética , Virus Satélites/genética , Replicación del ADN/genética , Islas Genómicas/genética , Filogenia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/virología , Proteínas Virales/genética
19.
Proc Natl Acad Sci U S A ; 111(16): 6016-21, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24711396

RESUMEN

Staphylococcal pathogenicity islands (SaPIs) are the prototypical members of a widespread family of chromosomally located mobile genetic elements that contribute substantially to intra- and interspecies gene transfer, host adaptation, and virulence. The key feature of their mobility is the induction of SaPI excision and replication by certain helper phages and their efficient encapsidation into phage-like infectious particles. Most SaPIs use the headful packaging mechanism and encode small terminase subunit (TerS) homologs that recognize the SaPI-specific pac site and determine SaPI packaging specificity. Several of the known SaPIs do not encode a recognizable TerS homolog but are nevertheless packaged efficiently by helper phages and transferred at high frequencies. In this report, we have characterized one of the non-terS-coding SaPIs, SaPIbov5, and found that it uses two different, undescribed packaging strategies. SaPIbov5 is packaged in full-sized phage-like particles either by typical pac-type helper phages, or by cos-type phages--i.e., it has both pac and cos sites--a configuration that has not hitherto been described for any mobile element, phages included--and uses the two different phage-coded TerSs. To our knowledge, this is the first example of SaPI packaging by a cos phage, and in this, it resembles the P4 plasmid of Escherichia coli. Cos-site packaging in Staphylococcus aureus is additionally unique in that it requires the HNH nuclease, carried only by cos phages, in addition to the large terminase subunit, for cos-site cleavage and melting.


Asunto(s)
Sitios de Ligazón Microbiológica/genética , Empaquetamiento del ADN , Endonucleasas/metabolismo , Islas Genómicas/genética , Fagos de Staphylococcus/enzimología , Staphylococcus/genética , Staphylococcus/virología , Replicación del ADN , Mutación/genética , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/ultraestructura , Proteínas Virales/metabolismo , Ensamble de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA