Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Gut ; 73(3): 448-458, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38123984

RESUMEN

OBJECTIVE: Patients with Crohn's disease (CD) exhibit great heterogeneity in disease presentation and treatment responses, where distinct gut bacteria and immune interactions may play part in the yet unresolved disease aetiology. Given the role of antibodies in the barrier defence against microbes, we hypothesised that gut bacterial antibody-coating patterns may influence underlying disease-mediated processes. DESIGN: Absolute and relative single and multicoating of gut bacteria with IgA, IgG1, IgG2, IgG3 and IgG4 in patients with CD and healthy controls were characterised and compared with disease activity. IgG2-coated and non-coated taxa from patients with severe CD were identified, profiled for pathogenic characteristics and monitored for enrichment during active disease across cohorts. RESULTS: Patients with severe CD exhibited higher gut bacterial IgG2-coating. Supervised clustering identified 25 bacteria to be enriched in CD patients with high IgG2-coating. Sorting, sequencing and in silico-based assessments of the virulent potential of IgG2-coated and bulk stool bacteria were performed to evaluate the nature and pathogenicity of IgG2-coated and non-coated bacteria. The analyses demonstrated IgG2-coating of both known pathogenic and non-pathogenic bacteria that co-occurred with two non-coated pathobionts, Campylobacter and Mannheimia. The two non-coated pathobionts exhibited low prevalence, rarely coincided and were strongly enriched during disease flares in patients with CD across independent and geographically distant cohorts. CONCLUSION: Distinct gut bacterial IgG2-coating was demonstrated in patients with severe CD and during disease flares. Co-occurrence of non-coated pathobionts with IgG2-coated bacteria points to an uncontrolled inflammatory condition in severe CD mediated via escape from antibody coating by two gut pathobionts.


Asunto(s)
Enfermedad de Crohn , Humanos , Enfermedad de Crohn/patología , Bacterias , Anticuerpos Antibacterianos , Inmunoglobulina G
2.
BMC Microbiol ; 24(1): 222, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38918717

RESUMEN

BACKGROUND: 5-Fluorouracil (5-FU) is used as an antineoplastic agent in distinct cancer types. Increasing evidence suggests that the gut microbiota might modulate 5-FU efficacy and toxicity, potentially affecting the patient's prognosis. The current experimental study investigated 5-FU-induced microbiota alterations, as well as the potential of prebiotic fibre mixtures (M1-M4) to counteract these shifts. METHODS: A pooled microbial consortium was derived from ten healthy donors, inoculated in an in vitro model of the colon, and treated with 5-FU, with or without prebiotic fibre mixtures for 72 h. Four different prebiotic fibre mixtures were tested: M1 containing short-chain galacto-oligosaccharides (sc GOS), long-chain fructo-oligosaccharides (lcFOS), and low viscosity pectin (lvPect), M2 consisting of arabinoxylan, beta-glucan, pectin, and resistant starch, M3 which was a mixture of scGOS and lcFOS, and M4 containing arabinoxylan, beta-glucan, pectin, resistant starch, and inulin. RESULTS: We identified 5-FU-induced changes in gut microbiota composition, but not in microbial diversity. Administration of prebiotic fibre mixtures during 5-FU influenced gut microbiota composition and taxa abundance. Amongst others, prebiotic fibre mixtures successfully stimulated potentially beneficial bacteria (Bifidobacterium, Lactobacillus, Anaerostipes, Weissella, Olsenella, Senegalimassilia) and suppressed the growth of potentially pathogenic bacteria (Klebsiella, Enterobacter) in the presence of 5-FU. The short-chain fatty acid (SCFA) acetate increased slightly during 5-FU, but even more during 5-FU with prebiotic fibre mixtures, while propionate was lower due to 5-FU with or without prebiotic fibre mixtures, compared to control. The SCFA butyrate and valerate did not show differences among all conditions. The branched-chain fatty acids (BCFA) iso-butyrate and iso-valerate were higher in 5-FU, but lower in 5-FU + prebiotics, compared to control. CONCLUSIONS: These data suggest that prebiotic fibre mixtures represent a promising strategy to modulate 5-FU-induced microbial dysbiosis towards a more favourable microbiota, thereby possibly improving 5-FU efficacy and reducing toxicity, which should be evaluated further in clinical studies.


Asunto(s)
Colon , Fibras de la Dieta , Disbiosis , Fluorouracilo , Microbioma Gastrointestinal , Prebióticos , Fluorouracilo/farmacología , Disbiosis/microbiología , Disbiosis/inducido químicamente , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Fibras de la Dieta/farmacología , Colon/microbiología , Colon/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Masculino , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/análisis , Femenino , Adulto , Pectinas/farmacología
3.
Nat Rev Endocrinol ; 20(7): 387-398, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38486011

RESUMEN

Antibiotic use disrupts microbial composition and activity in humans, but whether this disruption in turn affects host metabolic health is unclear. Cohort studies show associations between antibiotic use and an increased risk of developing obesity and type 2 diabetes mellitus. Here, we review available clinical trials and show the disruptive effect of antibiotic use on the gut microbiome in humans, as well as its impact on bile acid metabolism and microbial metabolites such as short-chain fatty acids. Placebo-controlled human studies do not show a consistent effect of antibiotic use on body weight and insulin sensitivity at a population level, but rather an individual-specific or subgroup-specific response. This response to antibiotic use is affected by the resistance and resilience of the gut microbiome, factors that determine the extent of disruption and the speed of recovery afterwards. Nutritional strategies to improve the composition and functionality of the gut microbiome, as well as its recovery after antibiotic use (for instance, with prebiotics), require a personalized approach to increase their efficacy. Improved insights into key factors that influence the individual-specific response to antibiotics and dietary intervention may lead to better efficacy in reversing or preventing antibiotic-induced microbial dysbiosis as well as strategies for preventing cardiometabolic diseases.


Asunto(s)
Antibacterianos , Diabetes Mellitus Tipo 2 , Disbiosis , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Antibacterianos/efectos adversos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Disbiosis/inducido químicamente , Dieta , Obesidad/metabolismo , Obesidad/microbiología , Ácidos y Sales Biliares/metabolismo
4.
Gut Microbes ; 16(1): 2292239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38105519

RESUMEN

The multi-factorial involvement of gut microbiota with Crohn's disease (CD) necessitates robust analysis to uncover possible associations with particular microbes. CD has been linked to specific bacteria, but reported associations vary widely across studies. This inconsistency may result from heterogeneous associations across individual patients, resulting in no apparent or only weak relationships with the means of bacterial abundances. We investigated the relationship between bacterial relative abundances and disease activity in a longitudinal cohort of CD patients (n = 57) and healthy controls (n = 15). We applied quantile regression, a statistical technique that allows investigation of possible relationships outside the mean response. We found several significant and mostly negative associations with CD, especially in lower quantiles of relative abundance on family or genus level. Associations found by quantile regression deviated from the mean response in relative abundances of Coriobacteriaceae, Pasteurellaceae, Peptostreptococcaceae, Prevotellaceae, and Ruminococcaceae. For the family Streptococcaceae we found a significant elevation in relative abundance for patients experiencing an exacerbation relative to those who remained without self-reported symptoms or measurable inflammation. Our analysis suggests that specific bacterial families are related to CD and exacerbation, but associations vary between patients due to heterogeneity in disease course, medication history, therapy response, gut microbiota composition and historical contingency. Our study underscores that microbial diversity is reduced in the gut of CD patients, but suggests that the process of diversity loss is rather irregular with respect to specific taxonomic groups. This novel insight may advance our ecological understanding of this complex disease.


Asunto(s)
Enfermedad de Crohn , Microbioma Gastrointestinal , Humanos , Enfermedad de Crohn/microbiología , Inflamación , Bacterias/genética , Bacteroidetes
5.
Access Microbiol ; 6(2)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482367

RESUMEN

Objectives: Extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-Ec) are frequently acquired during international travel, contributing to the global spread of antimicrobial resistance. Human-adapted ESBL-Ec are predicted to exhibit increased intestinal carriage duration, resulting in a higher likelihood of onward human-to-human transmission. Yet, bacterial determinants of increased carriage duration are unknown. Previous studies analysed small traveller cohorts, with short follow-up times, or did not employ high-resolution molecular typing, and were thus unable to identify bacterial traits associated with long-term carriage after recent acquisition. We aimed to identify which ESBL-Ec lineages are associated with increased carriage duration after return from international travel. Methods: In a prospective cohort study of 2001 international travellers, we analysed 160 faecal ESBL-Ec isolates from all 38 travellers who acquired ESBL-Ec during travel and subsequently carried ESBL-Ec for at least 12 months after return, by whole-genome sequencing. For 17 travellers, we confirmed the long-term carriage of ESBL-Ec strains through single nucleotide variant typing. To identify determinants of increased carriage duration, we compared the 17 long-term carriers (≥12 months of carriage) with 33 age-, sex- and destination-matched short-term carriers (<1 month of carriage). Long-read sequencing was employed to investigate long-term ESBL plasmid carriage. Results: We show that in healthy travellers with very low antibiotic usage, extra-intestinal pathogenic lineages of E. coli (ExPEC) are significantly more likely to persist than other E. coli lineages. The long-term carriage of E. coli from ExPEC lineages is mainly driven by sequence type 131 and phylogroup D E. coli. Conclusions: Although ExPEC lineages frequently cause extra-intestinal infections such as bloodstream infections, our results indicate that ExPEC lineages are also efficient intestinal colonizers, which potentially contributes to their onward transmission.

6.
Future Microbiol ; 19: 335-347, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38470403

RESUMEN

Aim: This study aimed to examine the impact of fecal water (FW) of active and remissive Crohn's disease (CD) patients on mucin degradation and epithelial barrier function. Methods: FW and bacterial membrane vesicles (MVs) were isolated from fresh fecal samples of six healthy controls (HCs) and 12 CD patients. Bacterial composition was determined by 16S rRNA gene amplicon sequencing. Results: In vitro FW-induced mucin degradation was higher in CD samples versus HC (p < 0.01), but not associated with specific bacterial genera. FW of three remissive samples decreased transepithelial electrical resistance in Caco-2 cells by 78-87% (p < 0.001). MVs did not induce barrier alterations. Conclusion: The higher mucin-degradation capacity of CD-derived FW might suggest contributions of microbial products to CD pathophysiology.


Asunto(s)
Enfermedad de Crohn , Humanos , Enfermedad de Crohn/microbiología , Mucinas/metabolismo , Células CACO-2 , ARN Ribosómico 16S/genética , Mucosa Intestinal/metabolismo , Permeabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA