RESUMEN
Inverted flexible perovskite cells (fPSCs) have attracted much attention for their high efficiency and power per weight. Still, the steady-state output is one of the critical factors for their commercialization. In this paper, it is found that the steady-state current of inverted fPSCs based on nickel oxide nanoparticles (n-NiOx) continuously decreases under light illumination. Conversely, those based on magnetron-sputtered NiOx (sp-NiOx) exhibit the opposite result. Based on visualization of ion migration in the photoluminescence (PL) imaging microscopy tests, the discrepancies in the buried surfaces lead to the differences in ion migration in perovskite films, which triggers the temporary instability of the output current of devices during operation. The DFT theoretical calculation and experimental results reveal that NiOx films with different contents of Ni vacancies can modulate the crystallization of the perovskite films on the NiOx surfaces. Tuning the crystallization of the perovskite films is essential to stabilize the output current of fPSCs at a steady state. To demonstrate that, capsaicin is doped into the perovskite solutions to improve the quality of the perovskite buried interface. Finally, the corresponding fPSCs exhibit outstanding efficiency and stability during operation. These results provide valuable scientific guidance for fabricating fPSCs with stable operation under illumination conditions.
RESUMEN
BACKGROUND: The efficacy of erector spinae plane block for thoracoscopic surgery remains controversial. We conducted a systematic review and meta-analysis to explore the impact of erector spinae plane block on thoracoscopic surgery. METHODS: We searched the PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases through February 2022 for randomized controlled trials (RCTs), assessing the effect of erector spinae plane block on thoracoscopic surgery. This meta-analysis was performed using the random-effect model. RESULTS: Seven RCTs, involving 439 patients, are included in the meta-analysis. Overall, compared with the control group for thoracoscopic surgery, erector spinae plane block (ESPB) results in significantly reduced pain scores at 1 h (standard mean difference (SMD) = -4.26; 95% confidence interval (CI) = -7.63 to -0.88; p = 0.01), 4 h (SMD = -4.08; 95% CI = -4.56 to -3.60; p < 0.00001), 8 h (SMD = -4.13; 95% CI = -4.62 to -3.65; p < 0.00001), and postoperative anesthesia consumption (SMD = -3.04; 95% CI = -4.58 to -1.50; p = 0.0001) and can decrease the incidence of nausea and vomiting (odd ratio (OR) = 0.18; 95% CI = 0.08 to 0.39; p < 0.001). CONCLUSIONS: ESPB can substantially enhance pain relief for thoracoscopic surgery.
Asunto(s)
Bloqueo Nervioso , Toracoscopía , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Bases de Datos Factuales , Dolor , Dolor Postoperatorio/prevención & control , Analgésicos OpioidesRESUMEN
Long non-coding RNA (LncRNA) H19 plays an important role on the biological functions of endogenous neural stem/progenitor cells (NSPCs). Our study aimed to explore the functions of H19 in NSPCs induced by oxygen-glucose deprivation/reperfusion (OGD/R) in vitro and the underlying mechanisms. In this study, our results showed that knockdown of H19 significantly inhibited NSPCs proliferation. Additionally, the apoptosis of NSPCs after ODG/R injury was notably promoted by H19 knockdown. Cell cycle arrest was induced in NSPCs at G0/G1 phase after OGD/R, while knockdown of H19 decreased the percentage of cells at G2/S phase. The results of immunofluorescence analysis revealed that H19 knockdown reduced the staining intensity of Ki-67 and DCX. Furthermore, H19 knockdown enhanced the expression of p53, Bax and Cleaved Caspase-3, while Bcl-2 expression was decreased. Silencing of H19 suppressed the NSPCs proliferation, cell cycle progression and differentiation, whereas cell apoptosis was promoted. Upregulation of H19 abolished OGD/R-induced NSPCs apoptosis, while cell proliferation and differentiation were promoted. Furthermore, the effects of overexpressed H19 on NSPCs proliferation, differentiation and apoptosis were abrogated by the upregulation of p53. In summary, overexpressed H19 resulted in the inactivation of p53, which promoted NSPCs proliferation, differentiation, and inhibited cell apoptosis. These findings suggested that H19 could promote cell proliferation and differentiation after OGD/R through suppressing the p53 signaling.
RESUMEN
BACKGROUND: CircRNA has emerged as a significant player in human malignancies, including hepatocellular carcinoma (HCC). Hsa_circ_0004277 (circWDR37) is abnormally up-regulated in HCC. But, its function and underlying mechanism in HCC progression are largely unknown. METHODS: qRT-PCR and western blot assays were used to measure the expression of circWDR37, miR-646, and TRAF4. Cell malignant phenotypes were assessed via CCK-8, EdU, colony formation, flow cytometry, transwell, and tube formation experiments. The intermolecular interaction between miR-646 and circWDR37 or TRAF4 was confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assay. The in vivo effect of circWDR37 on xenograft tumor growth was also investigated in mice. RESULTS: Increased CircWDR37 and TRAF4 and decreased miR-646 were found in HCC tissues and cells. Scilencing circWDR37 impeded cell proliferation, migration, invasion, and tube formation, while accelerated apoptosis. CircWDR37 directly bind to miR-646 to suppress miR-646 expression and up-regulate TRAF4 expression. MiR-646 inhibitor partially abated the cell phenotype changes caused by circWDR37 knockdown. Moreover, miR-646 exerted an inhibitory effect on cell malignant phenotypes, which were attenuated due to the increase of TRAF4. Additionally, circWDR37 knockdown blocked HCC tumor growth in vivo. CONCLUSION: CircWDR37 exerted an oncogenic effect in HCC by sponging miR-646 to up-regulate TRAF4 expression. Our finding elucidates a novel 'circWDR37-miR-646-TRAF4' regulatory axis in HCC and provides a promising target for HCC treatment.
RESUMEN
Various microorganisms play an important role in daily functions in the body and continue to flourish after death. Our prior investigation using frozen cadavers revealed that the appendix, rather than the transverse colon, was a superior sampling site for intestinal bacteria because the appendiceal flora had higher diversity than that in the transverse colon in the majority of experimental periods after death. We sought to explore out more about whether the appendicular flora is significantly related to postmortem interval (PMI) at natural temperatures following the host's death. In this work, we employed high-throughput sequencing to evaluate the contents of rats' appendices within 2 weeks after death and then utilized the random forest algorithm to build a PMI prediction model after completing basic visual analyses on the sequencing data. The findings revealed that Firmicutes was the absolute dominant species of appendicular flora; alpha-diversity of appendix flora first increased and then decreased, with the highest point appearing at 36 h after death; and the primary metabolic functions were carbohydrate metabolism, amino acid metabolism, as well as cofactors and vitamin metabolism. Finally, a random forest regression model for PMI prediction was built by the training data at the family level, with the mean absolute error of 10.27 h for prediction within 14 days postmortem, and the test set data subsequently proved the model's reliability. Changes in appendicular flora were strongly related to the PMI following rats' deaths, so we have reason to believe that the appendicular flora is valuable in predicting PMI.
Asunto(s)
Apéndice , Cambios Post Mortem , Ratas , Animales , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Secuenciación de Nucleótidos de Alto RendimientoRESUMEN
Although defects are prevalent in metal-organic frameworks (MOFs) and usually play a crucial role in modulating their performance in various applications, detailed structural characterizations of various defects remain a challenging task mainly due to their disordered, heterogeneous, and local nature. In this work, by using solid-state nuclear magnetic resonance spectroscopy (SSNMR) techniques in conjunction with density functional theory (DFT) calculations, it is clearly elucidated that the trimethylphosphine (TMP)-assisted 31P NMR strategy is capable of greatly facilitating the qualitative and quantitative description of the detailed structural and acidic characteristics as well as the evolution process of various Zr defects with subtle distinctions in UiO-66 upon moderate thermal treatment, hence surpassing most conventional analytical techniques. These results offer a fundamental understanding of the defect chemistry in MOFs.
RESUMEN
As a highly toxic and corrosive waste gas in the industry, hydrogen sulfide (H2S) usually originates from the utilization of coal, petroleum, and natural gas. The selective catalytic elimination of H2S shows great significance to ensure the safety of industrial processes and health of human beings. Herein, we report efficiently selective oxidation of H2S to elemental sulfur over covalent triazine framework (CTF-1-x, x = 400, 500, 600, 400-600 °C) catalysts. CTF-1-x samples were prepared from polymerization of 1,4-dicyanobenzene to form polyaryl triazine networks under ion solidothermal conditions in the presence of ZnCl2, which acts as both an initiator and a porogen. The resultant CTF-1-x samples possess abundant micro-mesoporosity, large Brunauer-Emmett-Teller (BET) surface areas, and tunable structural base sites with edge amine and graphitic nitrogen characteristics, which were homogeneously decorated onto their frameworks. As a result, CTF-1-x samples act as efficient and long-lived catalysts in selective oxidation of H2S to sulfur under ambient conditions (100% H2S conversion, 100% sulfur selectivity at 180 °C, 12â¯000 mL/(g·h)), and their activities were superior to those of commercial Fe2O3 and g-C3N4 desulfurization catalysts. Abundant nitrogen structural base sites of CTF-1-x effectively activate the reactants, and abundant micro-mesoporosity facilitates mass transfer in and out of CTF-1-x. The improved design of the nitrogen-doped carbon material for H2S activation and conversion could enhance the development of more active and robust nitrogen-doped carbon catalysts.
RESUMEN
Gradual changes in microbial communities in a human body after death can be used to determine postmortem interval (PMI). In this study, gut microflora samples were collected from the vermiform appendix and the transverse colon of human cadavers with PMIs between 5 and 192 h. The results revealed that the appendix might be an excellent intestinal sampling site and the appendix flora had an inferred succession rule during human body decomposition. Firmicutes, Bacteroidetes, and their respective subclasses showed a predictable successionrule in relative abundance over time. A Random Forest regression model was developed to correlate human gut microbiota with PMI. We believe that our findings have increased the knowledge of the composition and abundance of the gut microbiota in human corpses, and suggest that the use of the human appendix microbial succession may be a potential method for forensic estimation of the time of death.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Algoritmos , Cadáver , Humanos , Cambios Post Mortem , ARN Ribosómico 16SRESUMEN
A novel glutathione (GSH) surface molecularly imprinted polymer (SMIP) was prepared using modified macroporous adsorption resin (MAR) CLX1180 as a solid substrate, glutathione as a template, acrylamide (AM) and N-vinyl pyrrolidone (NVP) as functional monomers, and N,N'-methylenebisacrylamide (NMBA) as a cross-linker. The reaction could be initiated by three different ways, using CLX1180, GSH, and both, which was proved by the experimentation. The morphology and structure of this polymer were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and time-of-flight mass spectrometry (TOF-MS). The maximum adsorption capacity of GSH approached 39.03 mg·g-1, and the separation degree related to l-cysteine was as high as 4.18. Pseudo-first-order and Langmuir models were well fitting the adsorption properties. GSH-SMIP could be used for three adsorption/desorption cycles with only a slight decrease of adsorption capacity.